• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "공장"에 대한 통합 검색 내용이 2,502개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
엔비디아, 한국 AI 인프라·생태계 구축 협력… “GPU 26만 개 이상 추가 도입”
엔비디아가 대한민국 정부 및 기업들과 협력해 클라우드와 AI 팩토리를 중심으로 25만 개 이상의 GPU를 포함하는 전국 규모의 AI 인프라 확장 계획을 발표했다. 이번 인프라는 공공과 민간 부문이 함께 구축하며, 자동차, 제조, 통신 등 한국 주요 산업 전반의 AI 기반 혁신과 경제 성장을 견인할 핵심 토대가 될 예정이다. 이번 계획은 세계 각국 정상이 APEC 정상회의 참석을 위해 한국에 모인 가운데 발표됐다.  과학기술정보통신부는 기업과 산업 전반의 독자 AI 개발을 가속화하기 위해 최신 엔비디아 GPU 5만 개 도입을 추진 중이라고 밝혔다. AI 인프라 구축은 엔비디아 클라우드 파트너인 네이버 클라우드와 NHN클라우드, 카카오가 국가 독자 클라우드 내 컴퓨팅 인프라를 확장하기 위해 엔비디아 블랙웰(Blackwell) 등 GPU 1만 3000 개를 초기 도입하는 것을 시작으로, 향후 국가 AI컴퓨팅센터 구축 등을 통해 수년간 점진적으로 확대될 예정이다. 이 AI 인프라는 연구기관, 스타트업, AI 기업이 모델과 애플리케이션을 개발할 수 있도록 개방되며, 이는 대한민국의 AI 역량 강화와 인프라 확충을 위한 국가 전략을 뒷받침하게 된다. 또한, 엔비디아는 한국의 산업계, 학계, 연구기관과 AI-RAN과 6G 인프라 개발에도 함께하고 있다. 엔비디아는 최근 삼성(Samsung), SK텔레콤(SK Telecom), 한국전자통신연구원(ETRI), KT, LG유플러스(LG U+), 연세대학교와 협력해 지능형·저전력 AI-RAN 네트워크 기술을 공동 개발 중이다. 이 기술은 GPU 연산 작업을 디바이스에서 네트워크 기지국으로 오프로딩함으로써 컴퓨팅 비용을 절감하고 배터리 수명을 연장할 수 있도록 설계됐다.     한국의 자동차, 제조, 통신 분야 선도 기업들은 엔터프라이즈와 피지컬 AI 개발을 가속화하기 위해 대규모 AI 인프라 투자와 확장을 추진하고 있다. 삼성은 GPU 5만 개 이상을 탑재한 엔비디아 AI 팩토리를 구축해 지능형 제조를 발전시키고 제품과 서비스 전반에 AI를 적용한다. 삼성은 엔비디아 네모트론(Nemotron) 사후 훈련 데이터세트, 엔비디아 쿠다-X(CUDA-X), 엔비디아 cu리소(cuLitho) 라이브러리, 엔비디아 옴니버스(Omniverse) 등 엔비디아 기술을 활용해 정교한 반도체 제조 공정의 속도와 수율을 개선하는 디지털 트윈을 구축한다. 또한 엔비디아 코스모스(Cosmos), 엔비디아 아이작 심(Isaac Sim), 엔비디아 아이작 랩(Isaac Lab)을 활용해해 가정용 로봇 개발 포트폴리오를 강화하고 있다. SK그룹은 반도체 연구·개발·생산을 고도화하고, 디지털 트윈과 AI 에이전트 개발을 지원하는 클라우드 인프라 구축을 위해 5만 개 이상의 GPU를 탑재할 수 있는 AI 팩토리를 설계하고 있다. SK텔레콤은 엔비디아 RTX PRO 6000 블랙웰 서버 에디션 GPU를 기반으로 한 소버린 인프라를 제공해, 국내 제조 기업들이 엔비디아 옴니버스를 활용할 수 있도록 지원할 계획이다. SK 텔레콤은 스타트업, 기업, 정부 기관을 대상으로 디지털 트윈과 로보틱스 프로젝트 가속화를 위한 산업용 클라우드 인프라를 제공할 예정이다. 현대자동차그룹과 엔비디아는 한층 심화된 협력 단계로 나아가며, 모빌리티, 스마트 공장, 온디바이스 반도체 전반에 걸쳐 AI 역량을 공동 개발할 예정이다. 양사는 AI 모델 훈련과 배포를 위해 5만 개의 블랙웰 GPU를 기반으로 협력을 추진한다. 또한 한국 정부의 국가 피지컬 AI 클러스터 구축 이니셔티브를 지원하기 위해, 현대자동차그룹과 엔비디아는 정부 관계자들과 긴밀히 협력해 생태계 조성을 가속화할 계획이다. 이를 통해 약 30억 달러 규모의 투자가 이루어져 한국의 피지컬 AI 산업 발전을 한층 앞당길 전망이다. 주요 이니셔티브로는 엔비디아 AI 기술 센터, 현대자동차그룹 피지컬 AI 애플리케이션 센터, 지역 AI 데이터센터 설립 등이 포함된다. 네이버 클라우드는 소버린 AI와 피지컬 AI용 인프라를 구축하기 위해 엔비디아 AI 인프라를 확장하고 있다. 이에 따라 엔비디아 RTX PRO 6000 블랙웰과 기타 엔비디아 블랙웰 GPU를 포함해 최대 6만 개의 GPU를 도입할 예정이다. 네이버 클라우드는 엔비디아 AI 인프라에서 구동되는 엔비디아 네모트론 오픈 모델을 기반으로 차세대 소버린 AI 개발의 다음 단계를 준비 중이다. 또한 네이버 클라우드는 조선, 보안 등 산업 특화 AI 모델을 개발하고, 대한민국 국민 모두를 위한 포용적 AI 구현에 주력할 계획이다. 과학기술정보통신부는 엔비디아와의 협력을 기반으로 주권 언어 모델 개발을 위한 독자 AI 파운데이션 모델(Sovereign AI Foundation Models) 프로젝트를 추진한다. 본 프로젝트는 엔비디아 네모와 오픈 엔비디아 네모트론 데이터세트를 활용해 로컬 데이터를 기반으로 추론(reasoning) 모델을 개발하고 디스틸(distilling)할 예정이다. 또한 LG AI연구원, 네이버 클라우드, NC AI, SK텔레콤, 업스테이지가 독자 모델 개발을 지원하는 프로젝트에 협력한다. 기업, 연구진, 스타트업은 이 모델 개발에 기여하고 이를 활용해 음성, 추론 등 다양한 기능을 갖춘 AI 에이전트를 개발할 수 있다. LG는 피지컬 AI 기술 개발을 촉진하고, 피지컬 AI 생태계를 지원하기 위해 엔비디아와 협력하고 있다. 양사는 LG 엑사원(EXAONE) 모델을 활용해 스타트업과 학계를 지원한다. 일례로, 암 진단을 지원하는 모나이(MONAI) 프레임워크 기반의 엑사원 패스(EXAONE Path) 의료 모델이 있다. 한국과학기술정보연구원(KISTI)은 엔비디아와 협력해 한국의 슈퍼컴퓨터 6호기 ‘한강’을 활용한 연구 협력을 촉진하기 위한 공동연구센터 설립을 추진 중이다. KISTI는 또한 양자 프로세서와 GPU 슈퍼컴퓨팅을 연결하는 엔비디아의 새로운 개방형 아키텍처 NVQ링크(NVQLink) 지원을 발표했다. 엔비디아 쿠다-Q(CUDA-Q) 플랫폼과 연동되는 NVQ링크는 KISTI가 양자 오류 정정과 하이브리드 애플리케이션 개발 등 분야의 연구를 심화해 차세대 양자-GPU 슈퍼컴퓨터 개발을 가속화할 수 있도록 지원한다. KISTI는 또한 과학 연구 개발을 위한 파운데이션 모델을 구축하고, 오픈소스 엔비디아 피직스네모(PhysicsNeMo) 프레임워크를 활용한 물리 기반 AI 모델 개발을 연구자들에게 지원할 예정이다. 엔비디아와 파트너들은 한국의 경제 발전과 기회 창출을 위해 엔비디아 인셉션(NVIDIA Inception) 프로그램으로 스타트업을 육성하는 얼라이언스를 설립한다. 얼라이언스 회원사는 SK텔레콤을 포함한 엔비디아 클라우드 파트너가 제공하는 가속 컴퓨팅 인프라를 활용할 수 있다. 또한, IMM인베스트먼트, 한국투자파트너스, SBVA 등 벤처캐피털 얼라이언스와 엔비디아 인셉션의 지원을 받게 된다. 아울러 스타트업은 엔비디아의 소프트웨어와 전문 기술 역량도 활용할 수 있게 돼, 차세대 기업들의 성장을 더욱 신속하게 추진할 수 있게 된다. 엔비디아는 스타트업을 위한 엔비디아 인셉션 프로그램의 성과를 바탕으로, 차세대 기업 지원을 위해 한국 정부와도 협력할 계획이다. 또한 중소기업벤처부에서 운영하는 ‘엔업(N-Up)’ AI 스타트업 육성 프로그램에도 참여할 예정이다. 엔비디아의 젠슨 황 CEO는 “대한민국은 기술과 제조 분야에서 선도적 입지를 갖추고 있으며, 이는 대한민국이 AI 산업 혁명의 중심에 서 있음을 보여준다. 이 산업혁명에서 가속 컴퓨팅 인프라는 전력망과 광대역만큼 중요한 기반이 되고 있다. 한국의 물리적 공장이 정교한 선박, 자동차, 반도체, 전자제품으로 세계에 영감을 주었듯, 이제는 인텔리전스라는 새로운 수출품을 생산하며 글로벌 변화를 이끌 수 있다”고 말했다. 배경훈 부총리 겸 과학기술정보통신부 장관은 “AI가 단순히 혁신을 넘어 미래 산업의 기반이 된 지금, 대한민국은 변혁의 문턱에 서 있다. 엔비디아와 함께 국가 AI 인프라를 확충하고 기술을 개발하는 것은 제조업 역량 등 한국이 보유한 강점을 더욱 강화할 수 있는 투자이며, 이는 글로벌 AI 3대 강국을 향한 대한민국의 번영을 뒷받침할 것”이라고 말했다.
작성일 : 2025-10-31
한국산업지능화협회, ‘SMATOF 2025’ 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회가 공동 주관하는 경남 대표 스마트팩토리 & 자동화산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일 개막했다. 협회는 올해 처음으로 ‘산업 AI 특별관’을 구성해, 산업 AI 기술과 플랫폼을 선도하는 기업들의 혁신 사례와 설루션을 선보였다. 이번 특별관에는 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 주요 기업들이 참여해 산업 AI 기반의 제조 혁신 사례를 공유했다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 주요 제조 관련 기관을 통해 약 70여 개사의 바이어가 방한했다. 행사 기간 동안 ▲1:1 수출상담회 ▲스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램 등을 통해 우리 기업들과의 글로벌 네트워킹과 협력 기회를 마련했다.     한편, 10월 30일 개최된 ‘2025 제조 AX 혁신 콘퍼런스’는 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래 모빌리티 분야를 중심으로, DX·AX 선도기업의 실제 기술 적용 사례와 성공 전략이 공유된다. 기조 세션에서는 ▲AWS가 ‘제조AX 추진 전략, 데이터에서 더 많은 가치를!’이라는 주제로, 최적의 제조 AX 성과를 달성할 수 있는 방안과 실제 사례를 소개했다. ▲유비씨는 ‘From DX to AX : 앞서가는 기업들이 선택한 무인화·자율화 디지털 트윈 전략’을 주제로, DX 단계를 넘어 자율화(AX) 시대를 여는 핵심 전략과 2차전지, 조선, 물류 등 실제 산업 사례를 소개했다. ▲B&R 인더스트리얼 오토메이션은 ‘AI와 자동화의 융합 : 제조 혁신을 가속하는 트랜스포메이션 전략’을 주제로, AI와 클라우드 협업을 통해 엔지니어링 환경을 혁신하는 방법을 제시했다. 이 밖에도 일반 세션에서는 온로봇 코리아, 넘프, 온스트림, 서버키트가 참여해 스마트 공장 설루션, 로컬 LLM 적용 사례, 공정 최적화 및 예지보전 등 제조 AI 적용 전략과 실무적 인사이트를 공유했다. 한국산업지능화협회 김태희 혁신기획센터장은 ‘이번 행사를 계기로 지역과 기업 간의 협력 네트워크를 강화하고, 산업 현장의 디지털 전환(DX) 및 인공지능 전환(AX)을 지속적으로 지원해 나가겠다’고 밝혔다.  한편, SMATOF는 내년부터 격년제가 아닌 매년 개최되며, 2026년에는 10월 14일~16일 창원컨벤션센터(CECO)에서 열릴 예정이다.
작성일 : 2025-10-30
OSC모듈러산업협회 출범… 제조형 스마트 건설 혁신 시동
제조형 건설 혁신을 주도할 ‘(가칭)OSC모듈러산업협회’가 10월 28일 창립총회를 개최하고 공식 출범했다. 이번 창립총회에서는 김인한 M3시스템즈 대표이사가 초대회장으로 추대되었으며, 협회의 정관 승인, 조직 구성 및 추진계획 등이 의결되었다. 또한 관련 건설·제조·자동화·로봇·IT 분야의 기업 및 국토교통부의 인사들이 참석하였으며, 최근 OSC(Off-Site Construction : 탈현장 건설) 모듈러로의 전환 흐름 속에서 민간 주도의 활동기구 탄생에 기대감을 표명했다. 최근 국내 건설산업은 현장 시공 중심의 전통 방식에서 벗어나 ▲공장 제조 기반 DfMA 설계 ▲로봇 기반 자동 조립 ▲BIM/AI 기반 스마트 생산 제어 체계 ▲탄소중립 실현을 위한 저탄소 OSC 시스템 등으로 전환하려는 노력을 계속하고 있다. 이에 따라 모듈러·철골·PC 등 OSC 기반 기술을 통합적으로 이끌 민간 주도형 산업 거버넌스 구축 필요성이 지속 제기되어 왔다. OSC 모듈러는 탈현장 공법과 조립형 건축 유닛 생산을 아우르며, 설계·제조·조립·운영 전 과정을 공장 중심으로 수행하는 제조형 건설 방식이다. 이는 건설 산업 전반의 생산성, 비용, 품질 그리고 친환경성을 동시에 혁신할 미래 주력 산업으로 빠르게 부상하고 있다. 이번에 출범한 OSC모듈러산업협회는 ▲기술·품질 표준화 체계 구축 ▲정책·제도 기반 강화 및 인증·조달 체계 확립 ▲생애주기 기반 산업 생태계 및 민관 협력 네트워크 조성 ▲핵심 기술 고도화 및 전문 인력 양성 ▲시장 활성화 및 수요자 인식 제고 ▲글로벌 경쟁력 강화 및 친환경 지속가능성 확보 등을 핵심 목표로 제시하였다. 협회는 이후 분야별 전문분과를 구성하고 연구조합을 결성하여 각종 연구개발 사업 발굴, 산업계 공동 R&D 등을 적극적으로 추진할 계획이다. 초대회장으로 선출된 김인한 대표는 “OSC 모듈러는 건설을 제조업 수준의 혁신산업으로 도약시킬 핵심 동력”이라며 “협회를 중심으로 민간 기술 역량과 정부 정책이 맞물리는 산업 생태계를 구축해 글로벌 시장 선점에 나서겠다”고 밝혔다.  
작성일 : 2025-10-28
CAE 컨퍼런스 2025, 11월 7일 수원컨벤션센터에서 개최 예정
CAE 컨퍼런스 행사장 모습(사진은 CAE 컨퍼런스 2024 전경) 국내 제조업의 디지털 전환을 이끌 ‘CAE 컨퍼런스 2025’가 오는 11월 7일(금) 수원컨벤션센터에서 열린다. 올해로 15회를 맞는 이번 행사는 ‘시뮬레이션의 미래: AI와 디지털 트윈이 주도하는 제조 혁신’을 주제로, AI(인공지능)와 CAE(Computer Aided Engineering)의 융합이 만들어내는 산업 변화와 최신 기술 트렌드를 조명한다. 이번 행사는 월간 캐드앤그래픽스가 주최하고, CAE 컨퍼런스 준비위원회가 주관하며, ‘제7회 스마트공장구축 및 생산자동화전(SMATEC 2025)’과 함께 개최된다.  올해 컨퍼런스에서는 디지털 트윈과 생성형 AI를 접목한 최신 시뮬레이션 기술이 집중적으로 다뤄진다. 앤시스코리아 강태신 전무는 ‘디지털 제조 혁신을 위한 Ansys End-to-End 솔루션’을 주제로, AI 기반 통합 시뮬레이션 전략을 통한 생산성 향상 방안을 제시한다. 연세대학교 이종수 교수는 ‘자율지능 에이전트를 위한 물리모델 기반 시스템엔지니어링 & 생성적 산업인공지능’ 발표를 통해, 분포 외(OOD) 환경에서도 신뢰성을 확보하는 모델기반 접근법을 소개한다. 나니아랩스 강남우 대표는 ‘생성형 AI에서 Agentic AI까지: 자율설계의 미래’를 주제로, 스스로 설계 의사결정을 내리는 Agentic AI 기술과 설계 자동화 사례를 공개한다. 피도텍 최병열 연구위원은 ‘RBDO, 데이터 시대에 무결점 설계를 향해’ 발표를 통해 신뢰도 기반 최적설계의 최신 적용 사례를 다룬다.  또한 메타리버테크놀로지 서인수 이사는 'GPU 기반 입자해석기술(samadii)을 활용한 반도체·디스플레이 응용 사례'를, AWS 전병승 솔루션즈 아키텍트는 ‘클라우드 기반 CAE 혁신’을 주제로 AI와 클라우드를 결합한 차세대 시뮬레이션 환경을 소개한다. 한국알테어 이승훈 본부장은 ‘CAE 최신 동향과 AI 기반 디지털 트윈 가속화’ 발표를 통해 Meshless·Multi-Physics·Cloud 기술 트렌드와 AI 가속화 사례를 발표한다. LG전자 문강석 책임은 ‘파우치형 배터리 실링 공정의 시뮬레이션 최적화’, 장일주 책임은 ‘TV 제품 CAE 자동화 및 AI 활용 사례’를 발표하며, 시뮬레이션이 제조 공정의 신뢰성과 효율성을 동시에 높이는 방법을 제시한다. 현대자동차 한만용 책임연구원은 ‘승객 모니터링과 인체모델의 융합을 통한 디지털 트윈 기술’을 통해 SDV(Software Defined Vehicle) 시대의 고객 중심 설계 혁신 사례를 소개한다. CAE 컨퍼런스 준비위원장 이종수 교수는 “생성형 AI와 물리기반 모델의 결합이 가속화되며, 신뢰성 확보와 시뮬레이션 자동화가 산업의 핵심 이슈로 부상하고 있다”고 강조했다. 그는 이어 “AI·MLOps·클라우드 기반 시뮬레이션이 주도하는 새로운 패러다임 속에서, 지속가능하고 효율적인 제조 혁신 방향을 논의하는 장이 될 것”이라고 덧붙였다. 이번 컨퍼런스에는 현대자동차, LG전자, 앤시스코리아, 피도텍, 나니아랩스, 메타리버테크놀로지, AWS, 한국알테어 등 주요 제조기업과 CAE 솔루션 기업이 참여해 최신 기술과 사례를 공유한다. 또한 SMATEC 2025 전시회와의 연계로 다양한 CAE·AI·디지털 트윈 솔루션을 현장에서 직접 체험할 수 있다. 사전등록은 CAE 컨퍼런스 공식 홈페이지(www.cadgraphics.co.kr/cae)에서 가능하다. 한편, 10월 20일에는 캐드앤그래픽스 지식방송 CNG TV에서 프리뷰 방송이 진행되어, 한국기계연구원 박종원 단장과 태성에스엔이 김지원 이사가 CAE 기술의 방향성과 AI 융합 트렌드를 소개했다.   CAE 컨퍼런스 2025 발표자 - 연세대 이종수 / 앤시스코리아 강태신 /  나니아랩스 강남우 / 피도텍 최병열 / 메타리버테크놀러지 서인수 / AWS 전병승 / 한국알테어 이승훈 / 현대자동차 한만용 / LG전자 장일주 / LG전자 문강석
작성일 : 2025-10-28
한국산업지능화협회, ‘제2회 중견 DX 커넥티드 데이’개최
한국산업지능화협회는 10월 24일 서울 코엑스 스타트업 브랜치에서 ‘제2회 중견DX 커넥티드 데이(Connected Day)’를 개최했다고 밝혔다. 이번 행사는 산업통상부의 ‘디지털혁신 중견기업 육성사업’의 일환으로, 중견기업의 디지털 전환(DX) 진단결과를 공유하고 AI·DX 기술 공급기업과의 매칭 및 후속 지원 연계를 강화하기 위해 마련됐다. 행사는 ‘수요 기반형 매칭’을 주제로, 올해 협회를 통해 DX 진단을 완료한 중견기업의 현황과 필요 설루션을 기반으로 공급기업이 진단팀의 협업 결과를 발표하는 방식으로 진행됐다. 이를 통해 수요기업의 실제 현장 수요에 맞춘 맞춤형 기술 제안이 이루어졌다. 진단 발표 기업으로는 ▲일루넥스 ▲코그콤 ▲아이싸이랩 ▲케이솔루션즈가 참여해 데이터 분석·스마트 공장·ESG DX 등 다양한 산업 분야의 혁신 적용 사례를 공유했다.     이어 중견기업 DX 후속 연계지원사업 안내 세션에서는 2026년도 디지털혁신 중견기업 육성사업 계획과 한국인프라, 디엘정보기술 등 우수 참여기업의 지원 사례가 소개됐다. 이들은 설계 자동화, 공급망 탄소중립 등 산업 현장의 디지털 혁신 성과를 구체적으로 제시하며 참여 기업들의 관심과 질의응답을 이끌어냈다. DX 기술 마켓플레이스(밋업)에서는 AI, 스마트 공장, ESG 등 주요 기술 공급기업의 부스가 운영되었으며, 수요기업과 공급기업 간 1:1 상담 및 네트워킹을 통해 참가기업들이 실질적 협력 방안을 논의하는 시간을 가질 수 있었다. 한국산업지능화협회 추현호 센터장은 “커넥티드 데이는 진단 결과를 기반으로 중견기업과 기술 공급기업이 현장에서 바로 협력할 수 있는 실행형 플랫폼으로 자리 잡고 있다”며, “협회는 앞으로도 진단–연계–확산으로 이어지는 DX 지원 체계를 고도화해 나가겠다”고 말했다. 한편 협회는 이번 행사에 이어 오는 11월 7일 ‘중견기업 신성장동력 역량강화 과정 사업의 일환으로 ‘제2회 산업일자리전환 혁신포럼’을 개최해 중견기업의 신성장동력에 대한 기업 사례 발표를 진행할 예정이다.
작성일 : 2025-10-27
한국산업지능화협회, SMATOF 2025 및 ‘제조 AX 혁신 콘퍼런스’ 개최
한국산업지능화협회는 스마트 공장 및 자동화 산업 전문전시회인 ‘제9회 창원 국제 스마트팩토리 및 생산제조기술전(이하 SMATOF 2025)’이 10월 29일~31일 3일간 창원컨벤션센터(CECO)에서 개최된다고 전했다. 이번 행사는 경상남도와 창원특례시가 주최하고 한국산업지능화협회, 경남관광재단, 경남로봇산업협회, FA저널, 인더스트리 뉴스가 공동 주관한다. 창원시는 창원국가산단에 혁신 가치를 더해 미래 산업의 새로운 성장동력을 창출하기 위해 다양한 중장기 비전을 추진하고 있다. 이를 위해 ▲‘창원산업혁신파크’ 조성을 통한 산업 구조의 대전환 ▲제조업에 첨단 기술을 접목하는 디지털·인공지능 전환(DX·AX) 준비 ▲산업 공간에 문화적 요소를 융합한 ‘창원문화선도산단’ 조성 등을 단계적으로 구체화하며 산업 생태계 혁신에 속도를 내고 있다. 이에 발맞추어 올해로 9회차를 맞이한 SMATOF 2025는 ‘창원산단의 재도약, 제조업의 디지털 혁신을 DRIVE하다’를 주제로 개최되며, 디지털 전환(digitalization), 산업혁명(revolution), 혁신(innovation), 비전(vision), 전시회(exhibition) 다섯 가지 키워드로 구성하여 스마트 제조업의 미래상을 제시할 예정이다. 또한 태국국제로지스틱스협회, 말레이시아 제조업 연맹, 베트남호치민자동화협회 등 해외 제조 분야 주요 협회를 통해 약 70여 개사의 바이어가 방한한다. 주최 측은 바이어와 참가기업 간 1:1 수출상담회를 운영하고, 스마트 등대공장 및 경남 미래전략산업 대표공장 시찰 프로그램을 진행해 우리 기업들의 해외 시장 진출과 글로벌 네트워킹을 지원할 예정이다.     한편, 한국산업지능화협회는 제조업 전반에 걸친 AX 확산을 위해 올해 처음 ‘산업AI 특별관’을 선보인다고 전했다. 이 특별관에는 산업 AI 기술과 플랫폼을 공급하는 대표 기업들이 참여하며, 서버키트, 온스트림, 이웨이브솔루션, 넘프, 나이스솔루션 등 기업들이 산업 AI 혁신 사례와 설루션을 선보인다. 10월 30일에 개최되는 ‘2025 제조 AX 혁신 콘퍼런스’는 창원컨벤션센터 1층에 새로 오픈한 ‘더그레이드’에서 열릴 예정이다. 창원의 5대 주력산업인 기계, 항공, 방산, 자동차, 미래모빌리티 분야에 산업 AI 도입과 디지털·인공지능 전환을 지원할 수 있는 기업들이 참여해, 핵심 전략과 실증 사례를 공유한다. 기조 세션에서는 아마존웹서비스(AWS)가 참여해 ‘제조 AX 추진 전략, 데이터에서 더 많은 가치를’이라는 주제로 산업 AI 우수 비즈니스 모델 사례를 발표할 예정이다. 한국산업지능화협회의 이길선 전무이사는 “창원은 국내 제조산업의 중심지로, 디지털·인공지능 대전환을 통해 글로벌 산업 수도로 도약을 준비하고 있다”면서, “이번 행사를 통해 경남 지역 제조 기반의 수요기업과 산업 AI 설루션 공급기업 간 협력 네트워크를 강화하고, 선도 기업의 비즈니스 모델과 혁신 사례를 공유함으로써 지역 산업 전반의 디지털·AI 전환 확산을 적극 지원하겠다”고 밝혔다.
작성일 : 2025-10-23
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
AI 팩토리 M.AX 얼라이언스, 2030 제조 AI 최강국 향한 혁신 가속화
산업통상부는 10월 1일 AI 팩토리 M.AX 얼라이언스 전략 회의를 개최하고, 대한민국 제조업의 인공지능 전환(M.AX)을 통한 2030 제조 AI 최강국 도약을 위한 성과와 전략을 점검했다. 삼성전자, 현대자동차, LG엔솔, 삼성중공업 등 국내 대표 제조 기업들이 한자리에 모여 제조 혁신의 의지를 다졌다. 김정관 장관은 "AI 시대는 속도와의 전쟁이다. AI 팩토리는 빠르게 세계 1위를 도전할 수 있는 분야"라며, "정책과 자원을 집중해 순풍을 만들겠다"고 밝혔다.   AI 팩토리 선도사업, 2030년까지 500개로 대폭 확대 AI 팩토리 선도사업은 제조 공정에 AI를 접목해 생산성을 획기적으로 높이고 제조 비용과 탄소 배출 등을 감축하는 핵심 프로젝트이다. 이날 회의를 계기로 삼성전자, 현대자동차, LG전자, LG엔솔, SK에너지, HD현대중공업, 농심 등 업종 대표 기업들이 신규 참여를 확정했다. 이에 따라 현재 102개인 AI 팩토리 선도 사업은 2030년까지 500개 이상으로 확대될 계획이다. 주요 기업들은 AI 팩토리를 통해 혁신적인 성과를 목표로 했다. 삼성전자는 AI를 통해 HBM(고대역폭메모리반도체)의 품질을 개선한다. HBM은 ’28년까지 연평균 100% 이상 급성장이 기대될 정도로 각광받는 AI 반도체이다. 삼성전자는 현재 전반적으로 사람이 수행중인 HBM 불량 식별 공정에 AI를 도입할 계획이다. AI가 발열검사 영상, CT 이미지 등을 분석해 품질검사의 정확도를 99% 이상 높이고, 영상·이미지 등의 비파괴 검사를 통해 검사시간도 25% 이상 단축할 것으로 기대된다. HD현대중공업은 함정 MRO용(Maintain 유지보수, Repair 수리, Overhaul 정비) 로봇 개발을 추진한다. 보통 선체의 10% 면적에 따개비·해조류 등의 오염물질이 부착되면 연료소비가 최대 40%까지 증가한다. HD현대중공업은 숙련공에 의존하던 해양생물 제거, 재도장 등의 작업을 AI 로봇에 맡겨, MRO효율을 80% 이상 향상시키고 작업자 안전사고 등을 방지할 계획이다. 현대자동차는 셀방식 생산방식에 핵심이 되는 AI 다기능 로봇팔을 개발한다. 자동차산업은 소품종 대량생산의 컨베이어벨트 방식에서, 제품별로 공정을 다르게 적용해 유연생산이 가능한 셀기반 방식으로 전환되고 있다. 현대차는 힌지·도어 조립, 용접품질 검사 등 다양한 공정을 자율적으로 수행가능한 AI 로봇팔을 공정에 도입하여, 시장수요 변화에 신속히 대응하고 생산성을 30% 이상 높일 계획이다. 농심은 라면 제조설비에 AI 기반 자율정비 시스템을 도입한다. 원료공급, 제면, 포장 등의 라면 제조공정은 연속작동 설비가 많아 한 부분의 예기치 못한 고장으로 생산라인 전체가 중단될 수 있다. 이에 각 공정별로 다양한 이상 징후를 조기에 탐지하는 자율정비 시스템을 도입해 설비 효율성을 10% 이상 제고하고, 유지보수 비용은 10% 이상 절감할 계획이다. 현재까지 AI 팩토리 선도사업에 참여중인 업종별 주요기업 자동차 반도체 전자(가전 등) 철강 조선 현대차, LG이노텍, 한국타이어, 기아 삼성전자, 케이씨텍, 이수페타시스 LG전자, 쿠첸, LS전선 포스코, KG스틸, 대한제강 삼성중공업, HD현대삼호 항공·방산 식품·바이오 이차전지 석유화학·섬유 기계·건설 대한항공, KAI. 한화시스템 농심, 삼양식품, 한국콜마 LG에너지솔루션, 삼성SDI SK에너지, GS칼텍스, 코오롱 HD현대건설기계, 코넥 휴머노이드 로봇, 금년부터 제조 현장 실증 본격 투입 AI 팩토리 전략의 한 축으로, 제조 현장 휴머노이드 로봇 투입을 위한 실증 계획도 공개되었다. 금년에는 디스플레이, 조선, 물류 등 6개 현장에 휴머노이드가 투입된다. 분야 수요기업 공급기업 휴머노이드 주요 과업 디플 삼성디스플레이 레인보우로보틱스 레이저 장비내 렌즈교체, 검사 JIG 교체 작업 등 조선 HD현대미포 에이로봇 각종 상황과 이음 형태에 맞는 용접 작업 수행   삼성중공업 에이로봇 다양한 장애물, 협소 공간, 비평탄면 등 극복을 통해 자율 이동하며 용접·청소 등 가전 LG전자 로브로스 인간 수준 핸들링 작업 및 보행을 바탕으로 가전제품 공장 내 조립·운송 화학 SK에너지 홀리데이로보틱스 석유화학 제품 검사, 유압/가스 밸브 등 조작, 시료 제조, 검사 시료 운송 등 수행 유통 CJ대한통운 레인보우로보틱스 피킹·분류·검수·포장 등 복잡한 물류 작업 동작을 다양한 상품에 맞게 자율적으로 수행 산업부는 올해부터 2027년까지 100개 이상 휴머노이드 실증 사업을 통해 핵심 데이터와 기술을 확보하고, 2028년부터는 본격적인 양산 체계에 돌입할 계획이다. 선도사업 성과 가시화, 세계 최고 업종별 제조 AI 모델 개발 착수 현재까지 진행된 AI 팩토리 선도 사업에서는 이미 가시적인 성과가 도출되고 있다. GS칼텍스는 AI를 통해 정유 공정 데이터를 분석해 연료 비용을 20%가량 감축했으며, 온실가스 배출 저감 효과도 달성했다. HD현대미포는 AI 로봇을 투입해 용접 검사·조립 작업시간을 12.5% 단축했다. 반도체 기업인 대덕전자와 신한다이아몬드는 AI 도입으로 기존 육안 품질 검사 시간을 각각 90%, 30% 단축하는 성과를 보였다. 이러한 성과를 바탕으로 AI 팩토리 M.AX 얼라이언스는 세계 최고 수준을 목표로 하는 업종별 특화 제조 AI 모델 개발에 착수했다. 제조 AI에 특화된 전문가를 비롯해 뉴욕대 조경현 교수, 멜버른대 한소연 교수 등 초거대 AI 모델 전문가 23명이 공동으로 참여한다. 개발된 모델은 2028년 완료를 목표로 하며, 제조 현장 배포 시 기업들은 개발 비용 50%, 개발 시간 40%를 줄일 수 있을 것으로 기대했다. '다크 팩토리' 구현 위한 AI 팩토리 사업 확대 전략 산업부는 AI 팩토리 사업을 확대·개편해 내년부터 완전 자율형 AI 공장인 AI 팩토리(다크 팩토리) 건설에 필요한 기술 개발과 실증 사업을 추진한다. 제조 공정뿐 아니라 공장 설계, 시생산, 공급망 관리, 물류, A/S 등 제조 전 단계를 아우르는 AI 모델을 개발·확산할 계획이다. 특히 엔비디아 CEO 젠슨 황이 강조한 디지털 트윈을 활용한 '가상공장(Virtual Factory)' 구현을 전략의 한 축으로 삼았다. 가상공장을 통해 기업은 시스템 변경, 설비 고장, 공급망 변동 등 다양한 상황에서 공정 가동을 미리 테스트하고, 실제 공장과 연동해 모니터링, 예지 보전, 원격 제어 등에 활용할 수 있게 된다. 이러한 기술을 바탕으로 2030년까지 우리나라가 세계 최고의 AI 팩토리 수출국으로 발돋움하는 것을 목표로 관련 전략을 수립했다.
작성일 : 2025-10-11
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10