• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "검증"에 대한 통합 검색 내용이 3,694개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
HPE, 에릭슨과 협력해 듀얼모드 5G 코어 설루션 검증
HPE는 에릭슨과 협력해 통신 서비스 사업자가 멀티벤더 인프라 스택을 구축하는 과정에서 직면하는 핵심 과제를 해결하기 위한 공동 검증 랩 설립을 발표했다. 이번 협력은 클라우드 네이티브 기반의 AI 지원 듀얼모드 5G 코어 설루션의 검증을 통해, 새로운 서비스 도입 과정의 복잡성을 관리하면서도 고성능·확장성·효율성을 갖춘 네트워크를 구축해야 하는 증가하는 수요에 대응한다. HPE와 에릭슨은 이를 기반으로 통신사들이 운영을 간소화하고 혁신을 가속화하며, 초연결 시대의 요구사항을 충족할 수 있도록 지원할 계획이다. 공동 검증 랩은 상호운용성 테스트를 수행하고 검증된 설루션이 통신사의 요구사항을 충족하는지 확인하는 테스트 환경으로 활용된다. 이 스택은 에릭슨의 듀얼모드 5G 코어 설루션과 HPE 프로라이언트 컴퓨트(HPE ProLiant Compute) Gen12 서버, 앱스트라 데이터센터 디렉터(Apstra Data Center Director) 기반으로 관리되는 HPE 주니퍼 네트워킹(HPE Juniper Networking) 패브릭, 그리고 레드햇 오픈시프트(Red Hat OpenShift)로 구성된다. ▲‘에릭슨 듀얼 모드 5G 코어’는 5G와 4G 네트워크를 모두 지원하는 설루션으로, 효율적인 확장 및 미래 대비 네트워크 구축을 원하는 통신사의 복잡성과 운영 비용을 절감한다. ▲‘HPE 프로라이언트 DL360 및 DL380 Gen12 서버’는 인텔 제온 6 프로세서를 탑재해 AMF, UPF, SMF 등 네트워크 집약적 텔코 CNF(Containerized Core Network Functions)를 위한 최적의 성능을 제공한다. 또한 칩에서 클라우드까지 보안을 구현한 HPE Integrated Lights Out(iLO) 7을 통해 모든 계층에서 내장형 보안을 제공한다. ▲‘HPE 주니퍼 네트워킹 고성능 패브릭’은 QFX 시리즈 스위치와 앱스트라 데이터센터 디렉터를 기반으로 인텐트 기반 자동화(Intent-based Automation)와 AIOps 기반 보증 기능을 통해 운영 효율을 강화하고 비용을 절감한다. ▲‘레드햇 오픈시프트’는 공통 클라우드 네이티브 텔코 플랫폼으로서, 통신사가 새로운 서비스를 빠르게 개발·배포·확장할 수 있는 민첩성을 제공한다. 이를 통해 시장 출시 시간을 단축하고 기존 배포 주기를 개선하며, 코어에서 에지까지 일관되고 자동화된 운영 경험을 제공해 복잡한 네트워크 기능 배포 및 관리를 간소화한다.     스웨덴 에릭슨 본사 인근에 위치한 이번 검증 랩은 2025년 말 가동을 시작할 예정이다. 또한 실제 고객 테스트와 피드백을 통해 검증을 진행하고, 2026년 상반기에는 통합 설루션의 상용 검증을 완료해 시장 출시 속도를 높이고 라이프사이클 관리 효율을 강화할 계획이다. HPE의 페르난도 카스트로 크리스틴(Fernando Castro Cristin) 텔코 인프라 사업부 부사장 겸 총괄은 “HPE는 에릭슨과의 전략적 파트너십을 바탕으로 통신사가 5G 및 AI 중심의 경제에서 성공할 수 있도록 혁신적인 기술 설루션을 제공하는 데 주력하고 있다”면서, “에릭슨의 클라우드 네이티브 듀얼모드 5G 코어와 레드햇 오픈시프트를 검증된 차세대 HPE 컴퓨트 인프라 및 HPE 주니퍼 네트워킹 패브릭과 통합함으로써, HPE는 통신사가 신속한 서비스 배포와 수요 기반 확장, 트래픽 변동에 대한 유연한 대응, 예측 가능한 라이프사이클 관리, 그리고 빠르게 진화하는 기술 환경에 적응할 수 있는 새로운 통합 설루션을 개발하고 있다”고 말했다. 에릭슨의 크리슈나 프라사드 칼루리(Krishna Prasad Kalluri) 코어 네트웍스 설루션 및 포트폴리오 부문 총괄은 “에릭슨은 5G 및 코어 네트워크 분야의 글로벌 리더로서, 통신사가 클라우드 네이티브 네트워크로 전환하는 여정을 간소화할 수 있도록 개방성과 혁신을 지속적으로 추진하고 있다”며, “HPE와의 협력 및 공동 검증 랩 설립은 멀티벤더 인프라 환경에서 클라우드 네이티브 5G 코어 설루션 개발을 한층 더 발전시키는 중요한 계기가 될 것”이라고 밝혔다.
작성일 : 2025-10-20
윈드리버, 블랙박스와 지능형 에지 및 클라우드 혁신 위한 파트너십 체결
지능형 에지 소프트웨어를 제공하는 글로벌 기업인 윈드리버가 디지털 인프라 전문 기업 블랙박스(Black Box)와 전략적 파트너십을 체결하고 산업·제조·소매·금융·자동차·통신 등 다양한 시장에 차세대 지능형 에지 및 프라이빗 클라우드 설루션을 제공한다고 밝혔다. 이번 협업을 통해 윈드리버는 마이그레이션 기능을 탑재한 ‘윈드리버 클라우드 플랫폼(Wind River Cloud Platform)’ 및 엔터프라이즈 리눅스인 ‘eLxr Pro’를 블랙박스의 글로벌 통합 역량 및 고객 중심 접근 방식을 결합함으로써, 디지털 인프라 전환을 가속하고 운영을 현대화하고자 하는 엔터프라이즈 고객들을 폭넓게 지원한다는 계획이다. 윈드리버 클라우드 플랫폼은 가상화 및 컨테이너화된 애플리케이션을 위한 실제 운영 수준의(production-grade) 분산형 쿠버네티스 설루션으로, 오케스트레이션, 자동화 및 분석 툴을 통해 시간을 절감할 수 있도록 돕는다. 미션 크리티컬한 환경에서 복잡한 클라우드 아키텍처를 배포하고 관리할 수 있게끔 설계된 점이 특징이다. 오픈 소스이며 엔터프라이즈급 데비안(Debian)의 파생 프로젝트인 eLxr 프로젝트를 기반으로 하는 ‘eLxr Pro’는 커뮤니티 배포판에 커머셜 엔터프라이즈 지원 및 유지 보수를 추가함으로써, 기업에서는 확장 가능하고 안전하며 신뢰성이 높은 리눅스 설루션을 채택하고, 클라우드 투 에지 배포의 복잡한 과제를 해결하도록 지원한다. 양사의 이번 전략적 파트너십은 ▲통합된 인텔리전트 에지, 강력한 디지털 및 클라우드 네이티브 인프라 ▲안전하고 확장 가능한 프라이빗 클라우드 구축 ▲수명주기 자동화 및 중앙 집중식 오케스트레이션 ▲가상 머신 및 마이그레이션, 컨테이너, AI 워크로드 지원 ▲장기적인 지원 및 보안을 제공하는 엔터프라이즈급 리눅스 등과 같은 영역에 집중되어 있다. 이번 협력의 일환으로, 블랙박스는 윈드리버와 별도의 계약을 체결해 여러 지역에서 최종 고객과의 계약을 직접 수행할 예정이다. 윈드리버와 블랙박스는 기업 고객이 가진 고유한 운영 및 규제 요구 사항에 맞춰 탄력적인 고성능 디지털 인프라를 구축할 수 있도록 지원할 계획이다. 윈드리버의 대럴 조던 스미스(Darrell Jordan-Smith) 최고 매출 책임자는 “윈드리버 클라우드 플랫폼과 eLxr Pro는 오늘날 기업들이 요구하는 확장 가능하고 안전하며 효율적인 인프라를 제공하며, 블랙박스와의 협력을 통해 이러한 기능을 대규모로 구현할 수 있게 됐다”면서, “이번 파트너십을 통해 고객은 신뢰할 수 있는 시스템 통합, 운영 지원, 배포 범위가 뒷받침되는 검증된 고성능 에지 및 클라우드 아키텍처를 더 빠르게 구현할 수 있다. 이를 통해 혁신을 가속화하고, 위험을 줄이며, 클라우드에서 에지를 잇는 전체 환경을 더 스마트하게 운영할 수 있다”고 말했다. 블랙박스의 산지브 베르마(Sanjeev Verma) 사장 겸 CEO는 “인텔리전트 에지를 위한 혁신적인 기술을 제공하는 윈드리버와 함께 통합 전문성을 결합하여 효율성을 높이고, 혁신을 앞당기며, 새로운 수익원을 창출하는데 유리한 입지를 확보하게 됐다. 블랙박스는 이번 파트너십을 통해 하이퍼컨버지드 및 에지 컴퓨팅에 진출함으로써 디지털 인프라 혁신의 선두에서 장기적인 가치를 창출하고자 한다”고 덧붙였다.
작성일 : 2025-10-20
[케이스 스터디] 인더스트리 4.0을 위한 로봇 예측 유지보수의 발전
디지털 트윈과 AI가 시뮬레이션과 현실의 간극을 메우다   제조 시설은 지속적인 문제에 직면해 있다. 정비 일정은 일반적으로 실제 마모와 관계없이 3개월마다 부품을 점검하고 6개월마다 구성 요소를 교체하는 등 엄격한 일정을 따른다. 그 결과 불필요한 점검과 교체로 인한 비효율적인 시간 낭비가 발생하고, 반대로 정비 일정 전에 부품이 고장 나는 일도 생긴다. 센트랄수펠렉-파리 사클레대학교(CentraleSupélec–Université Paris-Saclay)의 지궈 젠(Zhiguo Zeng) 교수와 그의 연구팀은 디지털 트윈 기술과 딥러닝을 결합한 혁신적인 접근 방식을 통해 이 문제를 해결하고 있다. 그들의 목표는 모든 중요 부품에 센서를 배치할 필요 없이 시스템 수준의 모니터링 데이터만으로 로봇 시스템의 구성요소 수준의 고장을 감지하는 것이다. 젠 교수는 “유지보수는 공장에서 매우 큰 문제”라면서, “기계에 유지보수가 필요한 시기를 미리 안다면 주문이 적은 시기에 수리 일정을 잡을 수 있어 생산성 손실을 최소화할 수 있다”고 말했다. 그는 신뢰성 공학과 수명 예측 분야에서 풍부한 경험을 갖고 있지만, 디지털 트윈 기술은 그의 이전 연구와는 결이 다른 새로운 영역이었다. 센트랄수펠렉의 안 바로스(Anne Barros) 교수와 페드로 로드리게스-아예르베(Pedro Rodriguez-Ayerbe) 교수가 주도하는 학제 간 프로젝트인 ‘미래의 산업(Industry of the future)’에 참여하면서, 그는 디지털 트윈이 어떻게 강력한 시뮬레이션 도구를 물리적 시스템에 실시간으로 직접 연결할 수 있는지 깨달았다. 젠 교수는 “디지털 트윈은 결함 진단에 매우 유용하다. 이를 실제 기계의 데이터에 연결하여 그 데이터로 모델을 개선할 수 있다”고 설명했다.  제조업, 자동차, 항공우주 및 기타 분야로 활용 영역이 확대되면서, 디지털 트윈은 인더스트리 4.0에서 유망한 기술 중 하나로 자리잡고 있다. 물리적 객체나 시스템의 가상 복제본인 디지털 트윈(digital twin)을 생성함으로써, 조직은 운영 현황과 유지보수 필요성을 명확하게 파악할 수 있다. 또한 디지털 트윈은 예측 유지 관리 시스템 개발의 어려운 측면 중 하나인 고장 데이터의 부족에 대한 해결책을 제시한다. 젠 교수는 “현실에서는 고장이 자주 발생하는 걸 보기는 어렵다. 그래서 이제는 시뮬레이션을 통해 고장 데이터를 만들어낸다”고 설명했다.   가상과 물리의 가교 역할 디지털 트윈 프로젝트는 물리적 시스템과 가상 시스템 간의 다양한 수준의 통합을 통해 구현 옵션을 제공한다. 젠 교수의 연구팀은 세 가지 서로 다른 수준의 디지털 표현으로 작업했다. 기본 수준에서 디지털 모델은 기존 시뮬레이션처럼 작동하며, 물리적 시스템과 데이터를 교환하지 않는 정적 모델로 오프라인에서 실행된다. 그다음 단계는 디지털 섀도로, 가상 모델이 물리적 시스템의 데이터를 받아 그 행동을 미러링하지만 제어하지는 않는다. 가장 발전된 구현은 데이터와 정보의 양방향 흐름을 갖춘 진정한 디지털 트윈이다. 여기서 모델은 관찰을 바탕으로 스스로 업데이트하고 물리적 시스템을 제어하는 실시간 결정을 내린다. 연구팀은 테스트용으로 ArmPi FPV 교육용 로봇을 선택했다. 이 로봇은 5개의 관절과 하나의 엔드이펙터로 구성되며, 6개의 서보 모터로 제어된다. 결함 진단의 기초가 될 만큼 정확한 디지털 트윈을 만드는 것은 어려운 일이었다. 또한 기존 모니터링 접근 방식의 한계를 해결해야 했다. 젠 교수는 “대부분의 산업 사례에서 베어링을 진단하려면 베어링 수준의 센서가 필요하며, 이는 쉽지 않은 일이다. 내부에 베어링이 있는 큰 기계를 상상해보면 센서를 설치하기 위해서는 기계를 분해해야 하는데 때로는 공간이 충분하지 않을 때도 있다”고 말했다.   그림 1. ArmPi FPV 교육용 로봇(출처 : 센트랄수펠렉)   그들의 접근 방식은 시스템 수준 데이터(로봇 엔드 이펙터의 이동 궤적)를 사용하여 구성 요소 수준의 오류(개별 모터 문제)를 진단하는 것이었다. 또한 디지털 트윈을 사용하여 관찰할 수 있는 것과 감지해야 할 것 사이의 격차를 해소하고자 했다. 연구팀은 시뮬링크(Simulink)와 심스케이프 멀티바디(Simscape Multibody)를 사용하여 디지털 트윈을 구축했으며, 구성요소와 시스템 수준 동작을 모두 나타내는 계층적 모델을 만들었다. 젠 교수는 “모든 것은 시뮬레이션 모델을 설계하는 것으로 시작한다. 동적 시스템과 그 제어기를 모델링하고 싶다면 시뮬링크는 매우 강력하다”고 말했다. 연구팀은 시뮬링크를 사용해 모터 제어기를 PID 제어기로 모델링하면서 실험적으로 조정한 게인 값을 활용했다. 또한, 시뮬링크의 시각화 기능을 적극적으로 활용해 시뮬레이션 데이터와 실제 로봇의 센서 데이터를 연동할 수 있는 인터페이스를 구축하고, 실시간 모니터링 환경을 구성하였다. ROS 툴박스(ROS Toolbox)는 로봇 하드웨어와의 연결에서 유용한 역할을 했다. 젠 교수는 “로봇 운영 체제(Robot Operating System : ROS)를 사용하려면 일반적으로 ROS와 파이썬(Python) 환경을 별도로 구성하고 모든 연결을 직접 처리해야 한다”면서, “ROS 툴박스를 사용하면 이런 설정이 자동으로 관리되기 때문에 많은 노력을 아낄 수 있다”고 설명했다. 연구팀은 AI 모델 학습을 위한 데이터 준비 과정에서는 두 가지 접근 방식을 시도하였다. 먼저, 로봇에 입력되는 모터 명령과 그에 따른 그리퍼(gripper)의 움직임 패턴과 같은 원시 계측값을 기반으로 데이터를 수집하였다. 이후에는 디지털 트윈을 활용한 방식을 도입하였다. 시뮬레이션을 통해 로봇이 명령에 따라 어떻게 움직여야 하는지를 예측하고, 이 결과를 실제 움직임과 비교함으로써 예상과 실제 간의 차이를 도출하였다. 이러한 차이는 미세한 고장을 감지하는 데 유용한 지표로 작용하였다.   그림 2. 심스케이프 멀티바디의 로봇 팔에 대한 시뮬링크 모델(출처 : 센트랄수펠렉)   연구팀은 딥 러닝 툴박스(Deep Learning Toolbox)를 사용하여 장단기 메모리(Long Short-Term Memory : LSTM) 신경망을 훈련하여 특정 실패를 나타내는 패턴을 식별했다. 모델 아키텍처에는 각각 100개의 숨겨진 단위가 있는 두 개의 LSTM 계층, 그 사이의 드롭아웃 계층 및 완전히 연결된 분류 계층이 포함된다. 연구팀은 매트랩 앱 디자이너(MATLAB App Designer)를 사용하여 각 모터의 위치, 전압 및 온도를 포함한 실시간 데이터를 수집하는 그래픽 사용자 인터페이스를 설계했다. 이 인터페이스를 통해 로봇의 상태를 모니터링하고 오류 진단 모델의 예측을 검증할 수 있었다. 이러한 통합 도구들이 원활하게 함께 작동하면서, 연구팀은 소프트웨어 호환성 문제와 씨름하기보다는 효율적으로 기술적 과제 해결에 집중할 수 있었다.   현실 격차에 도전하다 연구팀은 실제 로봇에서 훈련된 모델을 테스트했을 때 연구원들이 ‘현실 격차’라고 부르는 시뮬레이션과 현실 세계 간의 불일치에 직면했다. 결함 진단 모델은 시뮬레이션에서 98%의 정확도를 달성하여 모터 고장의 위치와 유형을 모두 정확하게 식별했지만, 실제 로봇에서 테스트했을 때 성능은 약 60%로 떨어졌다. 젠 교수는 “시뮬레이션이 현실과 일치하지 않는 이유를 분석하고 있다”고 말하며, “실제 세계를 시뮬레이션 상에서 표현할 때 고려하지 못한 요소들이 있다”고 설명했다. 젠 교수와 그의 연구팀은 통신 신뢰성 문제, 시뮬레이션에서 고려되지 않은 모터 노이즈, 제어 명령과 모니터링 활동 간의 동기화 문제 등 성능 격차에 기여하는 여러 요인을 확인했다.   그림 3. 정상 상태 오류에서 로봇 팔의 애니메이션 및 관련 혼동 매트릭스(출처 : 센트랄수펠렉)   이러한 과제는 디지털 트윈 애플리케이션의 광범위한 문제를 반영한다. 현실은 가장 정교한 시뮬레이션보다 더 복잡하다. 연구팀은 낙담하기보다는 실제 노이즈 패턴을 시뮬레이션 하는 모듈을 디지털 트윈에 추가하고 전이 학습에 도메인 적응 기술을 적용하는 등 이러한 격차를 해소하기 위한 방법을 개발했다. 젠 교수는 “디지털 트윈 모델을 개발할 때 보정 테스트를 하긴 하지만, 이 역시 통제된 환경에서 이루어진다”고 말했다. 이어서 “하지만 산업 현장에 모델을 실제로 적용하면 훨씬 더 많은 노이즈가 포함된 데이터를 접하게 된다. 이처럼 현실의 노이즈를 알고리즘 관점에서 어떻게 보정할 것인가는 매우 도전적인 연구 주제”라고 설명했다. 이러한 수정을 통해 연구팀은 실제 세계 정확도를 약 85%까지 개선했다. 이는 실용적 구현을 향한 중요한 진전이다.   소규모 실험실에서 스마트 공장으로 연구팀의 작업은 단일 로봇을 넘어서 확장되고 있다. 이들은 다수의 로봇이 협업하며 생산 라인을 구성하는 소규모 스마트 공장 환경을 구축하고 있으며, 이를 통해 고장 진단 알고리즘을 보다 실제에 가까운 조건에서 실험하고자 한다. 젠 교수는 “우리는 미니 스마트 공장을 구축하려고 한다”면서, “생산 설비와 유사한 환경을 만들어 로봇에 알고리즘을 적용해, 실제 생산 스케줄링에 통합될 수 있는지를 실험하고 있다”고 설명했다. 이러한 접근 방식은 교육적 효과도 크다. 센트랄수펠렉의 공학과 학생들은 수업과 프로젝트를 통해 디지털 트윈, 로보틱스, 머신러닝 기술을 실습 기반으로 학습하고 있다. 젠 교수는 “학생들이 처음부터 가상 공간에서 모델을 직접 설계하고 이를 점차 실제 로봇과 연결해가는 과정을 보면, 그들이 이 과정을 진심으로 즐기고 있다는 걸 알 수 있다”고 전했다. 이 연구는 제조업뿐 아니라 물류, 스마트 창고 등 다양한 산업 분야로의 확장이 가능하다. 예를 들어 스마트 창고에서는 로봇이 정해진 경로를 따라 이동하지만, 장애물이 나타나면 이를 인식하고 경로를 유동적으로 조정해야 한다.   그림 4. 여러 로봇이 소규모 스마트 공장 환경의 생산 라인에서 협력하여 작동한다.(출처 : 센트랄수펠렉)   젠 교수는 “스마트 창고에서 로봇은 사전 정의된 규칙을 따르지만, 패키지가 떨어지고 경로가 막히는 등 경로를 리디렉션하고 다시 프로그래밍해야 하는 경우가 있을 수 있다. 이런 경우 로봇을 조정하기 위해 각 로봇의 실시간 위치를 알아야 하기 때문에 디지털 트윈 시스템이 필요하다”고 설명했다. 연구팀은 구성요소가 고장 날 때 로봇의 움직임을 조정하는 것과 같은 내결함성 제어를 포함한 추가 응용 프로그램을 모색하고 있다. 또한 연구자들은 에너지 소비만 고려하는 것이 아니라, 궤적 최적화 모델에서 각 모터의 성능 저하 수준과 잔여 유효 수명도 고려하는 건전성 인식 제어를 개발하고 있다. 그들의 코드, 모델, 데이터 세트를 깃허브 저장소(GitHub repository)를 통해 자유롭게 공개하고 있으며, 다른 연구자들이 이를 바탕으로 연구를 확장해 나가기를 기대하고 있다. 목표는 개선의 출처가 어디든 간에, 보다 나은 고장 진단 시스템을 구축하는 것이다. 젠 교수는 “누군가 우리보다 더 나은 결과를 만들어낸다면 정말 기쁠 것”이라고 전했다. 중국 제조업 현장에서 일하던 부모님의 영향을 받아 공학자의 길을 걷게 된 젠 교수에게 이번 연구는 단순한 학문적 탐구를 넘어선 개인적인 사명이기도 하다. 젠 교수는 “어릴 때 제조업에서 일하는 것이 얼마나 힘든 일인지 직접 보며 자랐다”면서, “내가 그렸던 비전은 그런 육체 노동을 로봇이 대체하게 해 사람들이 보다 나은 삶을 살 수 있도록 하는 것이었다”고 전했다.   ■ 이웅재 매스웍스코리아의 이사로 응용 엔지니어팀을 이끌고 있으며, 인공지능·테크니컬 컴퓨팅과 신호처리·통신 분야를 중심으로 고객의 기술적 성공을 지원하는 데 주력하고 있다. LG이노텍과 LIG넥스원에서 연구개발을 수행하며 신호처리와 통신 분야의 전문성을 쌓아왔다.     ■ 기사 PDF는 추후 제공됩니다.
작성일 : 2025-10-20
지멘스, 심센터 테스트랩에 AI 기능 추가해 모달 테스트 및 분석 프로세스 혁신
지멘스 디지털 인더스트리 소프트웨어가 심센터 테스트랩(Simcenter Testlab) 소프트웨어의 최신 업데이트를 발표했다. 이번 업데이트에는 AI 기반 워크플로가 새롭게 추가돼, 물리적 충격(임팩트) 테스트 수행 시 필요 인력을 줄이면서 모달(modal) 분석 프로세스를 최대 7배까지 가속화할 수 있다. 또한 자동화된 데이터 수집과 처리 기능이 강화돼 모든 테스트 단계에서 데이터 품질과 일관성을 향상시킨다. 이를 통해 엔지니어는 더욱 빠르고 스마트하게 테스트를 수행할 수 있게 됐다. 새로운 AI 지원 모달 분석은 복잡한 모드 선택과 검증을 자동화해 수동 작업과 작업자 의존도를 줄이고, 궁극적으로 모달 분석 속도를 최대 7배까지 가속화한다. 이러한 테스트 자동화 혁신의 최전선에는 AI 기반 모달 테스트 기능이 있다. 이 기능은 향상된 자동 모드 선택·검증과 전체 모달 테스트 워크플로를 간소화하는 통합 모달 분석 대시보드를 결합해 모달 분석 워크플로를 최대 700%까지 가속화한다. 또한 지능형 센서 배치와 자동 히트(hit) 선택을 통해 충격 데이터 수집 과정을 단순화하고 필요한 인력을 줄여준다.     이와 함께, 심센터 테스트랩은 향상된 테스트/분석 도구를 제공한다. Transfer Path Analysis(TPA)는 심센터 테스트랩의 새로운 자동화 기능과 처리 역량을 통해 전체 분석 시간을 40% 단축한다. 이를 통해 숙련도가 낮은 사용자도 정교한 소음·진동·불쾌감(Noise Vibration Harshness, NVH) 예측을 보다 쉽게 활용할 수 있다. 심센터(Simcenter) 물리적 테스트 하드웨어와 새로운 심센터 테스트랩 오토메이티드 컴포넌트 모델 익스트랙터(Simcenter Testlab Automated Component Model Extractor) 소프트웨어를 활용한 자동화된 컴포넌트 모델 추출 설루션을 통해, 차단력(blocked forces)과 임피던스(impedance) 주파수 응답 함수(Frequency Response Function : FRF)를 자동으로 수집한다. 결과적으로 컴포넌트 특성화에 소요되는 시간을 수 주에서 수 시간으로 단축할 수 있다. 심센터 테스트랩 스케줄 디자이너(Simcenter Testlab Schedule Designer)는 사전 정의된 시퀀스(sequence)로 데이터 처리와 검증을 자동화한다. 이를 통해 데이터 추적성을 제공하고, 불완전하거나 일관성 없는 테스트 데이터 발생 위험을 제거할 수 있다. 이번 업데이트는 스케줄 디자이너에서 정의된 테스트 계획을 심센터 SCADAS RS 데이터 수집 시스템의 Recorder App으로 원활하게 전송한다. 이 통합을 통해 작업자는 무선 태블릿 기반의 명확한 지침을 제공받을 수 있으며, 즉각적인 데이터 검증과 처리가 가능해져 오류를 줄일 수 있다. 지멘스는 심센터 SCADAS RS가 범용 또는 타사 형식으로 데이터를 내보낼 수 있으며, 이를 통해 다른 소프트웨어 플랫폼에서도 데이터 처리와 분석 수행이 가능하다고 소개했다. 지멘스 디지털 인더스트리 소프트웨어의 장클로드 에르콜라넬리(Jean-Claude Ercolanelli) 시뮬레이션 및 테스트 설루션 부문 수석 부사장은 “지멘스는 엔지니어링 수명주기 전반에 걸쳐 AI를 적극 활용해 프로세스와 워크플로를 간소화하고, 수작업을 최소화하며, 제품 출시 속도를 높이는 데 주력하고 있다. 이번 심센터 테스트랩의 최신 개선 사항은 AI를 통합해 팀이 물리적 테스트를 수행·관리·분석하는 방식을 혁신하기 위한 지멘스의 노력을 보여준다. 우리는 설계와 개발에서부터 물리적 테스트의 핵심 단계에 이르기까지 엔지니어링 관행의 중대한 변화를 이끌고 있다”고 말했다.
작성일 : 2025-10-16
크렐로, ISO 27001 인증 획득… “글로벌 제조 파트너로 도약 추진”
크렐로가 국제표준화기구(ISO)의 정보보안경영시스템 인증(ISO 27001)을 획득했다고 밝혔다. 크렐로는 AI 기반 산업 맞춤 온라인 제조 서비스를 제공하는 기업으로, 3D 프린팅, CNC 가공, 판금, 진공주형, 금형 사출 등 다양한 생산 기술을 활용해 시제품부터 대량 생산까지 개인 및 기업이 빠르고 안정적으로 제조를 시작할 수 있는 인프라를 제공한다.  ISO 27001 프레임워크는 정보 보안 관리에 필요한 핵심 요소(위험 관리, 접근 통제, 물리적 보안, 운영 절차 등)를 통합적이고 체계적으로 관리할 수 있도록 설계되어 있다. ISO 27001은 국제적으로 검증된 정보보안 관리 체계를 충족했음을 의미한다. 이에 따라 파일 접근 권한 관리, 기록 추적, 파일 반출 통제, 물리적 접근 차단 등 전 과정을 글로벌 표준에 맞춰 운영한다. 고객의 도면과 기술 자료 역시 NDA 체결 여부와 관계없이 체계적인 보안 체계 아래 안전하게 관리된다는 것이 크렐로의 설명이다.   크렐로는 “이미 ISO 9001:2015(품질경영시스템)와 ISO 14001(환경경영시스템)을 보유한 데 이어 이번 인증 획득으로 품질·환경·보안을 아우르는 글로벌 수준의 경영 체계를 공식적으로 인정받았다”고 전했다. 또한, “크렐로는 품질, 보안, 환경을 모두 관리 체계 안에 포함시키며 안정성과 신뢰를 확보하고, 지속 가능한 성장을 추구하는 전략적 행보를 이어가고 있다. 특히 로봇, 드론, 자동차 등 첨단 제조 산업의 B2B 기업이 요구하는 보안 기준을 충족하는 데 큰 의미가 있다”고 설명했다. 이번 ISO 27001 인증을 더함으로써 크렐로는 일관된 품질 관리, 고객 데이터 보호 책임 및 지속 가능한 경영을 지속하겠다는 뜻을 밝혔다.   크렐로의 김희중 대표는 “크렐로는 이번 ISO 27001 인증을 통해 품질, 환경, 보안 요건을 모두 충족하는 체계를 갖추게 되었다. 이러한 체계는 제조 서비스 기업이 지켜야 할 기본이지만, 업계에서는 드물게 운영되는 수준”이라면서, “이번 인증은 단순한 내부 체계 구축을 넘어, 보안을 최우선으로 하는 산업군에도 안심할 수 있는 파트너가 되겠다는 약속이다. 앞으로도 고객 여러분께 신뢰와 안정성, 그리고 지속가능한 제조 환경을 제공하겠다”고 밝혔다.
작성일 : 2025-10-15
캐디안, 3D 도면·디자인 뷰어 업그레이드 출시
  캐디안은 자사의 3D 뷰어인 ‘캐디안 3D 뷰어 2026(CADian 3D Viewer 2026)’를 출시했다고 밝혔다. 이번 버전은 속도 개선과 안정성 강화로 다양한 형식의 3D 도면 파일을 실시간으로 확인하고 검증할 수 있는 기능을 제공한다. 캐디안 3D 뷰어는 2010년 처음 선보인 이후 도면·디자인 특허 출원 및 심사를 위한 도구로 쓰여 왔다. 캐디안은 “특히 국내 특허청의 3D 디지털 도면 제출 기준에 최적화된 호환성과 기능을 갖추고 있으며, 국제적으로도 그 실용성을 인정받고 있다”고 소개했다. 이번 2026 버전은 DWG, DXF, DWF(오토캐드), 3DS(3D 맥스), 3DM(라이노), IGS(IGES), STP(STEP), STL(3D 프린팅), OBJ(Wavefront OBJ) 등 다양한 CAD 포맷을 지원하며, 특허청 제출용으로 요구되는 6면도(정면·배면도, 좌·우측면도, 평면·저면도)와 사시도(아이소메트릭)를 자동으로 생성하는 기능이 강화되었다. 캐디안 3D 뷰어는 고가의 CAD 및 디자인 소프트웨어가 없이도 도면을 실시간으로 검토할 수 있기 때문에, 시간과 장소의 제약 없이 손쉽게 3D 도면을 확인하고 제출할 수 있는 환경을 제공한다. 이를 통해 사용자가 어떤 CAD 프로그램을 이용했든, 3D 디자인 파일만 있으면 자동으로 6면도와 사시도를 추출하고 실시간으로 다양한 3D 파일을 자유롭게 뷰잉할 수 있다는 것이 캐디안의 설명이다. 캐디안은 향후에도 전 세계 디자인 특허 출원 환경에 최적화된 도구로 3D 뷰어의 기능을 지속 확장해 나갈 계획이다. 캐디안의 박승훈 대표는 “새로운 3D 저작 도구에서 생성되는 포맷도 지속적으로 추가 지원할 예정”이라면서, “캐디안 3D 뷰어가 디자인 출원의 필수 도구로 자리매김할 수 있도록 기술 개발을 이어갈 것”이라고 밝혔다.
작성일 : 2025-10-15
벡터-시높시스, 가상ECU 기반의 SDV 개발 지원
벡터코리아는 AUTOSAR Classic 표준을 준수하는 자사의 ECU 개발 설루션 ‘MICROSAR Classic’과 시높시스의 ‘시높시스 실버(Synopsys Silver)’를 통합하여, ECU(전자제어장치) 개발 검증 시뮬레이션을 초기단계부터 확장하여 실행할 수 있도록 지원한다고 밝혔다. 시높시스 실버는 실제 하드웨어 없이 소프트웨어 개발 초기 단계부터 가상 환경에서 전자 제어 장치(vECU)를 생성하고 테스트하는 소프트웨어 인 더 루프(SiL) 설루션이다. 벡터와 시높시스는 지난 3월, 소프트웨어 정의 차량(SDV)의 개발 가속화를 위해 전략적 협력을 맺은바 있다. 양사는 협력을 통해 벡터의 소프트웨어 팩토리 전문성과 시높시스의 전자 디지털 트윈 기술을 사전 통합(pre-integrated)한 설루션을 제공한다. 자동차 제조업체는 설루션을 활용해 소프트웨어 검증 과정을 앞당겨 개발 생산성을 개선하고, 차량 수명주기 전반에 걸쳐 소프트웨어 개발 및 배포 속도를 높일 수 있다. 최근 SDV 아키텍처의 소프트웨어 복잡성이 증가함에 따라 ECU, ZCU(존 컨트롤 유닛 : Zonal Control Unit), CCU(중앙 컴퓨트 유닛 : Central Compute Unit) 등의 개발 주기가 길어지고 임베디드 디바이스 배포가 지연되는 문제가 발생하고 있다. 이러한 과제를 해결하기 위해서는 자동차 제조사와 공급사가 ECU, ZCU, CCU를 개별적으로 그리고 상호 연동된 상태에서 가능한 한 이른 단계부터 검증하는 것이 중요하다. 이러한 조기 검증을 위해, 가상 프로토타이핑(virtual prototyping) 기반 시뮬레이션 도구는 가상 환경에서의 통합 및 테스트를 가능하게 하여 문제를 조기에 발견하고 물리적 프로토타입 필요성을 줄여준다. 이로써 소프트웨어 품질이 향상되고 초기 피드백 확보가 가능해진다.     시높시스 실버는 가상 프로토타이핑 환경에서 ECU, ZCU, CCU 등 다양한 ECU 유형을 가상 ECU(vECU)로 개발 및 테스트할 수 있도록 지원한다. 이를 통해 소프트웨어 개발 속도를 가속화하고, 공급사와 제조사가 하드웨어 디바이스나 프로토타입에 의존하지 않고 소프트웨어를 통합·테스트·디버깅할 수 있다. 시높시스 실버는 임베디드 스택(Embedded Stack)을 가상 하드웨어 위에 배치하여 애플리케이션 통합, 미들웨어 통합, 운영체제 통합(Level 1~Level 3 vECU)을 지원한다. 이를 통해 ECU 소프트웨어의 모듈·레이어·조합을 격리해 수직적·수평적 통합은 물론, 개발 초기 단계에서 ECU 복합 검증(Compound Validation)이 가능하다. 벡터의 MICROSAR Classic은 시높시스 실버와 통합되면서 vECU 단위의 시스템 수준 통합 및 검증이 가능해졌다. 이 과정에서 운영체제와 드라이버는 실버 시뮬레이션 모듈로 대체되며, 임베디드 스택은 가상 하드웨어 환경에서 실행된다. 애플리케이션 소프트웨어는 OEM이 개발하고, BSW(Basic Software)와 RTE(Runtime Environment)는 MICROSAR Classic이 제공한다. 이를 위한 워크플로우는 다빈치 컨피규레이터 클래식(DaVinci Configurator Classic)을 통해 진행된다. 다빈치 컨피규레이터 클래식은 AUTOSAR 기반 ECU 개발 도구로, BSW와 RTE를 설정하고 코드를 생성한다. 가상 통합 단계에서는 실버 시뮬레이션 모듈이 실제 드라이버를 대체하며, 외부 코드 생성기를 통해 시뮬레이션용 소스 코드가 생성된다. 이후 vECU는 SIL(Software-in-the-Loop) 테스트에 활용될 수 있으며, 필요 시 벡터의 CANoe에 SIL Kit을 통해 연결할 수도 있다. 한편, MICROSAR Classic은 실시간 처리가 가능한 임베디드 기본 소프트웨어 스택(Embedded Base Software Stack)으로, 모든 하드웨어 및 주변장치 드라이버를 포함한 모듈형 구조를 제공한다. 사용자는 런타임 환경(RTE)을 직접 정의할 수 있으며, 하드웨어 위나 Vector OS 및 타 OS 환경에서도 실행이 가능하다. 이는 고성능 멀티코어 시스템뿐 아니라 리소스가 제한된 단일 코어 환경에서도 유연하게 적용될 수 있다.
작성일 : 2025-10-14
트림블, “테클라 기반으로 BIM 전문가 자격 시험 첫 진행”
트림블 코리아는 자사의 BIM 소프트웨어 테클라(Tekla)를 기반으로 마련된 ‘BIM 전문가 2급’ 자격증 시험이 오는 11월 1일 2차 수시로 진행될 예정이라고 밝혔다. 이 자격증 시험은 한국BIM학회와 한국디지털교육원이 공동 주관하며, 국내에서는 처음으로 트림블의 테클라 설루션으로 실무 역량을 검증하는 BIM(건설 정보 모델링) 자격 검증 시험이다. 제1회 시험은 지난 8월 30일 시행됐다. 이번 자격 시험은 최근 건설업계의 화두인 구조 안정성 및 철근 시공 관리 강화 요구에 부응하기 위해 마련됐다. 트림블 코리아는 응시자들이 실무 중심의 평가 과정을 통해 정확한 철근 모델링과 구조 검증 역량을 객관적으로 검증받는 기회가 될 것으로 기대하고 있다. 트림블의 테클라 스트럭처스(Tekla Structures)는 구조 설계와 철근 모델링에 특화된 BIM 설루션으로 설계부터 제작, 시공에 이르는 건설 전 과정을 지원한다. 이를 통해 정밀하고 시공성이 우수한 모델을 생성·관리함으로써 건설 프로젝트의 효율성과 정확성을 높이고, 이해관계자 간의 원활한 협업을 지원한다.     트림블 코리아의 박완순 사장은 “국내서 처음으로 테클라 기반 BIM 자격 검증 시험이 시행됨으로써 실무 역량을 갖춘 BIM 전문가 양성이 한층 가속화될 것으로 기대한다. 앞으로도 트림블은 다양한 교육 과정을 지원하고, 적극적인 협력을 통해 국내 BIM 인재들이 구조 안전성과 품질 향상에 기여할 수 있도록 적극 협력할 것”이라고 말했다. 한편, 트림블 코리아는 지난 8월 6일 한국디지털교육원과 BIM 활성화를 위한 전략적 업무 협약(MOU)을 체결했다. 이번 협약을 통해 양 기관은 BIM 교육 공동 운영, 자격증 제도 협력, 세미나·워크숍 개최 등 BIM 인재 교육 지원에 협력할 예정이다. 또한 한국디지털교육원은 테클라 기반 ‘BIM 전문가 2급’ 자격증 대비 과정을 개설해 교육을 운영하고 있다. 이 밖에도 트림블 코리아는 국내 BIM 인재 양성을 위해 노력하고 있다고 소개했다. 한국폴리텍대학 인천캠퍼스에서 중소기업 종사자와 학생들을 대상으로 무료 Cost-BIM 교육을 제공했으며, ‘BIM 어워즈’ 후원을 통해 국내 건설 산업의 BIM 기술 확산을 지원하고 있다. 또 2016년부터는 연 2회(하계·동계) 산학협력 프로그램 ‘트림블 캠프’를 운영하며 차세대 전문가 양성에 힘써왔다.
작성일 : 2025-10-13
2024년 가상증강현실(VR·AR)산업 실태조사 보고서
  가상증강현실(VR・AR) 산업은 글로벌 ICT 산업 성장의 키워드로 전 세계가 주목하고 있으며 그 규모가 점차 확대 되어 국가 미래산업 중 하나로 주목 국내 VR・AR산업의 매출, 인력, 수출, 연구개발(R&D) 현황 등을 객관적으로 확인할 수 있는 전문적이고 현 실태 중심의 국가승인 통계 생산   2024년 가상증강현실(VR·AR)산업 실태조사 보고서 목차 제 1 장  조사 개요 제 2 장  조사 결과 부 록   01     조사 목적 ················································································································   002 02   조사 연혁 ················································································································   002 03   조사 개요 ···············································································································    003 04   조사 대상 및 모집단 구축 ············································································    003 05   주요 조사 내용 ·····································································································   007 06   VR・AR산업  분류 ································································································   008 07     데이터 검증 ·············································································································   010 08   조사 회수 결과 ·····································································································   012 01    응답기업 일반현황 ·······························································································   016 02   기업 현황 ·················································································································   026 03   매출&판매 ···············································································································   032 04   수출 ····························································································································   045 05   인력 현황 ················································································································   053 06   산업 전망 ·················································································································   062 07     R&D  현황 ···············································································································   067 01     용어해설 ···················································································································   076 02   VR・AR산업  분류체계 연계표 및 해설서 ··············································    079 03   조사 결과표 ············································································································   085 04   조사표 ··························································································································   116   출처 : 과학기술정보통신부,  소프트웨어정책연구소  
작성일 : 2025-10-13
인텔, 팬서 레이크 아키텍처 공개하면서 18A 공정 기반의 AI PC 플랫폼 제시
인텔은 차세대 클라이언트 프로세서인 인텔 코어 울트라 시리즈 3(코드명 팬서 레이크)의 아키텍처 세부 사항을 공개했다. 2025년 말 출시 예정인 팬서 레이크는 미국에서 개발 및 제조되며, 진보된 반도체 공정인 인텔 18A로 제작된 인텔의 첫 번째 제품이 될 것으로 보인다. 인텔 코어 울트라 시리즈 3 프로세서는 인텔 18A 기반으로 제조된 클라이언트 시스템 온 칩(SoC)으로, 다양한 소비자 및 상업용 AI PC, 게이밍 기기, 에지 설루션을 구동할 예정이다. 팬서 레이크는 확장 가능한 멀티 칩렛 아키텍처를 도입하여 파트너사들에게 폼 팩터, 세그먼트, 가격대 전반에 걸쳐 향상된 유연성을 제공한다. 인텔이 소개한 팬서 레이크의 주요 특징은 ▲루나 레이크 수준의 전력 효율과 애로우 레이크 급 성능 ▲최대 16개의 새로운 P-코어 및 E-코어로 이전 세대 대비 50% 이상 향상된 CPU 성능 제공 ▲최대 12개의 Xe 코어를 탑재한 새로운 인텔 아크 GPU로, 이전 세대 대비 50% 이상 향상된 그래픽 성능 제공 ▲최대 180 플랫폼 TOPS(초당 수 조의 연산)를 지원하는 차세대 AI 가속화를 위한 균형 잡힌 XPU 설계 등이다.     인텔은 팬서 레이크를 PC뿐 아니라 로봇 공학을 포함한 에지 애플리케이션으로 확장할 계획이다. 새로운 인텔 로봇 공학 AI 소프트웨어 제품군과 레퍼런스 보드는 정교한 AI 기능을 갖춘 고객이 팬서 레이크를 제어 및 AI /인식 모두에 활용하여 비용 효율적인 로봇을 신속하게 혁신하고 개발할 수 있도록 지원한다.  팬서 레이크는 2025년 대량 생산을 시작하며, 첫 번째 SKU는 연말 이전에 출하될 예정이다. 또한 2026년 1월부터 폭넓게 시장에 공급될 예정이다.  한편, 인텔은 또한 2026년 상반기에 출시될 예정인 인텔 18A 기반 서버 프로세서인 제온 6+(코드명 클리어워터 포레스트)를 미리 공개했다. 팬서 레이크와 클리어워터 포레스트는 물론 인텔 18A 공정으로 제조된 여러 세대의 제품들은 모두 애리조나주 챈들러에 위치한 인텔의 공장인 팹 52에서 생산된다. 인텔의 차세대 E-코어 프로세서인 인텔 제온 6+는 인텔이 지금까지 개발한 가장 효율적인 서버 프로세서로, 인텔 18A 공정으로 제작된다. 인텔은 2026년 상반기에 제온 6+를 출시할 계획이다.  제온 6+의 주요 특징은 ▲최대 288개의 E-코어 지원 ▲전 세대 대비 사이클당 명령어 처리량(IPC) 17% 향상 ▲밀도, 처리량 및 전력 효율의 개선 등이다. 클리어워터 포레스트는 하이퍼스케일 데이터센터, 클라우드 제공업체 및 통신사를 위해 설계되어 조직이 워크로드를 확장하고 에너지 비용을 절감하며 더 지능적인 서비스를 제공할 수 있도록 지원한다.  인텔 18A는 미국에서 개발 및 제조된 최초의 2나노미터급 노드로, 인텔 3 대비 와트당 성능이 최대 15% 향상되고 칩 밀도가 30% 개선되었다. 이 공정은 미국 오리건 주 공장에서 개발 및 제조 검증 과정을 거쳐 초기 생산을 시작했으며, 현재 애리조나 주에서 대량 생산을 향해 가속화되고 있다. 인텔은 향후 출시될 자사의 클라이언트 및 서버 제품에서 최소 3세대에 인텔 18A 공정을 활용할 계획이다. 인텔 18A는 10년 만에 선보이는 인텔의 새로운 트랜지스터 아키텍처 리본FET(RibbonFET)를 적용해, 더 큰 확장성과 효율적인 스위칭을 통해 성능과 에너지 효율을 높인다. 그리고 새로운 백사이드 전원 공급 시스템인 파워비아(PowerVia)를 통해 전력 흐름과 신호 전달을 개선한다. 인텔의 첨단 패키징 및 3D 칩 적층 기술인 포베로스(Foveros)는 여러 칩렛을 적층 및 통합하여 고급 시스템 온 칩(SoC) 설계로 구현함으로써 시스템 수준에서 유연성, 확장성 및 성능을 제공한다.  인텔의 립부 탄(Lip-Bu Tan) CEO는 “우리는 향후 수십 년간 미래를 형성할 반도체 기술의 큰 도약으로 가능해진 흥미진진한 컴퓨팅의 새 시대에 접어들고 있다”며, “차세대 컴퓨팅 플랫폼은 선도적인 공정 기술, 제조 역량 및 첨단 패키징 기술과 결합되어 새로운 인텔을 구축하는 과정에서 전사적 혁신의 촉매가 될 것이다. 미국은 항상 인텔의 최첨단 연구개발, 제품 설계 및 제조의 본거지였다. 미국내 운영을 확대하고 시장에 새로운 혁신을 선보이면서 이러한 유산을 계승해 나가게 되어 자랑스럽게 생각한다”고 말했다.
작성일 : 2025-10-10