개별 관찰
시점 – 사물이나 현상을 바라보는 눈 (6)
지난 호에서는 변화와 흐름의 본질부터 응용에 이르기까지 구체적인 사례를 소개하였다. ‘변화와 흐름의 관찰’ 방법과 관찰된 결과를 어떻게 가시화 또는 시각화하는지 구체적인 사례를 함께 생각해 보았다. 동영상의 활용, 열전달 경로, 소리(음파), 유체의 시각화 사례를 살펴보았다.
이번 호에서는 ‘개별 관찰’, ‘집단 관찰’, ‘확률과 통계’에 관한 이야기를 시작하면서, 첫 번째로 ‘개별 관찰’에 관해서 소개하고자 한다. ‘개별 관찰’은 어떤 경우에 가능하며 효과적인지에 관해서 생각해 보고, 다음 호에 소개할 ‘집단 관찰’의 의미를 생각하는 발판으로 삼고자 한다.
■ 연재순서
제1회 호기심
제2회 암중모색
제3회 관찰의 시점과 관점
제4회 정적 이미지와 동적 이미지
제5회 변화와 흐름의 관찰
제6회 개별 관찰
제7회 집단 관찰
제8회 확률과 통계
제9회 작용, 반작용, 상호작용
제10회 무엇을 볼 것인가?
제11회 무엇을 믿을 것인가?
제12회 가설, 모델, 이론의 설득력의 시대성
■ 유우식
웨이퍼마스터스의 사장 겸 CTO이다. 동국대학교 전자공학과, 일본교토대학 대학원과 미국 브라운대학교를 거쳐 미국 내 다수의 반도체 재료 및 생산 설비 분야 기업에서 반도체를 포함한 전자재료, 공정, 물성, 소재 분석, 이미지 해석 및 프로그램 개발과 관련한 연구를 진행하고 있다. 경북대학교 인문학술원 객원연구원, 국민대학교 산림과학연구소 상임연구위원, 문화유산회복재단 학술위원, 국제문화재전략센터 전문위원이다.
홈페이지 | www.wafermasters.com
그림 1. 개별 관찰의 목적은 무엇이며 어디까지 가능할까?
개별 관찰
개별 관찰은 개인이나 사물의 따로 구별해서 관찰하고 기록하는 작업이다. 사회과학, 교육, 의료 등 맞춤형 서비스가 필요한 다양한 분야에서 활용된다. 공장에서도 제품 검사와 공정 관리에서 개별 관찰은 필수이다. 개별 관찰이 적용되는 분야와 사례를 몇 가지 들어보면 다음과 같다.
유아 교육 : 아동의 발달, 관심 및 학습 스타일 조사
건강 관리 : 환자가 겪고 있는 문제나 어려움의 확인
사회과학 : 그룹의 문화, 신념 및 관행의 이해
제품 검사 : 공장에서 생산된 제품의 품질 검사
공정 관리 : 생산 공정 각 단계에서의 기준 관리
개별 관찰은 자신의 감정에 기반하기보다는 객관적이고 설명적이어야 하며, 주관적인 가치 판단은 피해야 한다. 관찰 내용을 구체적으로 설명하고 정량화할 수 있어야 하며, 반복적인 관찰로 재현성을 확인해야 한다. 이처럼 개별 관찰은 목적부터가 개체 간의 차이를 인정하는 것부터 출발한다.(그림 1)
모든 개체는 물질(substance)로 이루어져 있다. 모든 물질은 그것을 구성하는 원소(element) 또는 원자(atom)의 집합체이다. 물질을 이루는 기본적인 성분을 나타내는 원소는 추상적인 의미이고, 물질을 이루는 가장 작은 입자라는 구체적인 개념이면서 양을 셀 수 있는 것은 원자이다. 원소는 화학적 방법으로는 더 간단한 순물질로 분리할 수 없는, 모든 물질을 구성하는 기본적 요소라고 정의된다. 원자핵 내의 양성자 수로 원자 번호를 정하여 사용하고 있다. 원자핵 내의 양성자의 수와 원자 번호는 같다. 양자의 수는 같지만, 중성자의 수가 다른 동위 원소도 원자 번호는 같다. 중성 원자는 양성자의 개수와 전자의 개수가 같다.
현재까지는 원자 번호 1번인 가장 가볍고 작은 기체인 수소(H, Hydrogen)부터 준금속(semi-metal) 고체인 오가네손(Og, Oganesson)까지 118종이 알려져 있다. 원자 번호와 이름은 정해놓았지만, 아직 발견되지 않은 원소도 두 종류가 있다. 미발견 원소는 119번 우누넨늄(Uue, Ununennium)과 120번 운비닐륨(Ubn, Unbinillium)이다.
아보가드로의 법칙
아보가드로의 법칙으로 유명한 아메데오 아보가드로(Amedeo Avogadro)는 이탈리아의 물리학자이자 화학자이다. 아보가드로 법칙은 ‘온도와 압력이 같다면 일정 부피 안에 들어 있는 입자 수는 기체의 종류와 무관하다’는 법칙이다. 실제로는 이상 기체에서만 성립한다. 아보가드로 수(Avogadro constant)는 입자 수를 물질량과 관계짓는 비례상수로 6.02214076×10²³mol−¹이다. 1기압, 0℃ 조건에서 22.4L의 이상 기체의 원자의 수에 해당한다.(그림 2) 고체와 액체의 경우에는 원자량에 해당하는 무게가 되면 해당 원자가 아보가드로 수만큼 있다는 의미가 되고, 밀도에 따라서 체적이 정해진다.
아보가드로 수는 1865년 오스트리아의 과학자 요한 요제프 로슈미트(Johann Josef Loschmidt)가 이상 기체 법칙을 이용해 1㎤ 내에 들어있는 입자 개수를 계산한 값을 사용해서 구한 것이다. 이런 역사적 배경 때문에 아보가드로 수를 독일어권에서는 ‘로슈미트 수(Loschmidt constant)’라고 부르기도 한다.
아보가드로 수 : 1 mole(22.4L)의 기체 입자 수, 6.02×1023 개
로슈미트 수
1㎤(1mL)의 기체 입자 수, 2.69×1019 개
1㎣(1μL)의 기체 입자 수, 2.69×1016 개
비록 눈에는 보이지도 않는 공기이지만 1㎣(1μL)에 2.69경(京, 1016)개, 1㎤(1mL)에 2690경 개, 1 mole(22.4L)에 6020해(垓, 1020)개의 입자가 움직이고 있다. 평소에는 써 본 적도 없는 수를 동원해야 겨우 표현할 수 있는 어마어마한 개수의 입자가 있는 셈이다. 이렇게 많은 입자를 하나씩 구별해서 ‘개별 관찰’이 가능할까? 가능하다고 하더라도 얼마나 쓸모가 있을까?
그림 2. 아보가드로의 가설과 아보가드로 수
■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-06-04