• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "강화학습"에 대한 통합 검색 내용이 19개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
[케이스 스터디] KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템
비행 훈련부터 제품 개발·운영까지 아우르는 핵심 인프라를 목표로   최근 몇 년 사이 시뮬레이션 산업은 디지털 트윈, AI(인공지능), VR(가상현실)/AR(증강현실) 등 첨단 디지털 기술 중심으로 빠르게 재편되고 있다. KAI(한국항공우주산업)는 이러한 흐름에 발맞춰 언리얼 엔진을 도입함으로써 항공산업 전반에 걸친 디지털 혁신을 추진하고 있다. ■ 자료 제공 : 에픽게임즈   KAI는 KT-1 기본 훈련기, T-50 고등훈련기, 수리온 기동헬기, 송골매 무인기 등 다양한 항공우주 시스템을 자체적으로 설계 및 제작하며, 지난 40년간 항공산업 및 국방산업을 선도해 온 종합 항공우주 설루션 기업이다. 최근에는 소형무장헬기(LAH)와 차세대 전투기 KF-21 개발을 비롯해 위성과 발사체 총조립 등 우주 분야로도 사업을 확대하고 있다. KAI는 2024년 ‘언리얼 페스트 시애틀 2024(Unreal Fest Seattle 2024)’에 참가해 자사의 시뮬레이션 전략을 소개하는 세션을 진행했다. 이번 호에서는 이 발표 내용을 바탕으로 시뮬레이션 산업의 급변하는 흐름 속에서 KAI가 어떻게 대응하고 있는지, 언리얼 엔진을 중심으로 한 시뮬레이션 통합 전략과 실제 적용 사례, 그리고 향후 비전 등을 중심으로 KAI의 기술 혁신에 대해 살펴본다.   ▲ 이미지 출처 : ‘KAI의 언리얼 엔진 기반 차세대 시뮬레이션 에코시스템 | 언리얼 엔진’ 영상 캡처   시뮬레이션 산업의 변화와 KAI의 대응 최근 시뮬레이션 산업은 빠르게 발전하며 구조적인 변화를 겪고 있다. 클라우드 기반 시뮬레이션 도입으로 언제 어디서든 고성능 자원에 접근할 수 있게 되었고, 디지털 트윈, AI, 머신러닝 기술의 결합을 통해 시뮬레이션은 단순한 재현을 넘어 예측과 최적화를 수행할 수 있는 툴로 진화하고 있다. 또한 VR/AR/MR(혼합현실) 기술은 훈련의 몰입감과 현실감을 높여 실제 환경과 유사한 시뮬레이션을 가능하게 하고, 마이크로서비스 아키텍처를 기반으로 한 소프트웨어 설계는 유연성과 확장성을 높이고 있다. KAI는 이러한 디지털 전환에 적극 대응하기 위해 전통적인 레거시 시뮬레이션 시스템을 언리얼 엔진과 통합하고 있다. 핵심 전략은 세 가지이다. 첫째, 언리얼 엔진을 활용한 빠른 프로토타이핑으로 기술 검증과 적용 속도를 높이는 것이다. 둘째, 표준화된 인터페이스를 통해 기존 시스템과의 원활한 연동을 실현하는 것이다. 셋째, 지속 가능한 콘텐츠 개발을 위한 플랫폼 설계로 장기적인 생태계 구축을 추진하는 것이다. 이를 통해 KAI는 기존 자산의 가치를 극대화함과 동시에 급변하는 기술 환경에 유연하고 효율적으로 대응하고 있다.   언리얼 엔진이 변화하는 시뮬레이션 산업에 주는 영향 언리얼 엔진은 시뮬레이션 산업의 진화에 있어 중요한 역할을 하고 있다. 우선 고품질의 리얼타임 3D 그래픽을 통해 현실감 있는 몰입형 시뮬레이션 환경을 구현할 수 있어, 훈련과 테스트의 효율성을 높이고 있다. 또한 VR/AR/MR과의 통합 지원은 다양한 산업에서 실제 같은 체험 기반 학습을 가능하게 한다. 언리얼 엔진의 모듈형 아키텍처와 개방된 생태계는 기존 레거시 시스템과의 통합을 쉽게 하고, 새로운 기술이나 기능을 빠르게 적용할 수 있는 유연성을 제공한다. 특히 디지털 트윈, AI, 머신러닝 등 최신 기술과의 연계가 원활하여 복잡한 시스템의 설계, 유지보수, 운영 효율을 높일 수 있다. KAI와 같은 기업에게 언리얼 엔진은 단순한 툴을 넘어, 지속 가능한 시뮬레이션 콘텐츠를 개발하고 새로운 시뮬레이션 생태계를 구축하는 핵심 기술로 자리잡고 있다.   ▲ KAI의 시뮬레이터로 본 FA-50의 모습(이미지 출처 : KAI)   기존 시스템에 언리얼 엔진을 통합한 사례 KAI는 항공기 훈련 체계에 언리얼 엔진을 도입해 현실성과 효율을 갖춘 시뮬레이터를 개발하고 있다. 대표적으로 VR 시뮬레이터의 경우, 조종사가 풀 플라이트 시뮬레이터에 들어가기 전 VR 기기를 통해 절차와 조작 감각을 사전에 익힐 수 있도록 돕고 있다. 언리얼 엔진으로 실제 항공기와 동일한 가상 조종석을 구현해 이륙/착륙, 비상절차, 항전 장비 조작 등을 별도 교관 없이 반복 학습할 수 있도록 했다. 기존의 시뮬레이터는 실제 항공기 수준의 조작감과 훈련 효과를 제공하지만, 높은 구축 비용과 운영 비용, 전용 시설의 필요 등으로 대량 보급에 한계가 있었다. KAI는 이러한 문제를 보완하기 위해 VR 기술을 도입했다. 언리얼 엔진은 영상 발생 장치, 계기 패널, 입출력 장치 등을 대체한 것은 물론, VR HMD(헤드 마운트 디스플레이) 하나만으로 기존의 여러 장치를 필요로 하는 대형 시현 시스템의 효과를 구현할 수 있게 했다. 또한 KAI는 독자적인 역학 모델과 항전 시스템을 언리얼 엔진의 실시간 렌더링과 결합해 실제 조종과 유사한 수준의 훈련 환경을 제공하고 있다. GIS(지리 정보 시스템), DEM(수치 표고 모델) 등 초정밀지도 기반의 한반도 3D 지형을 재현해 조종사의 임무 지역 지형 학습까지 지원하고 있다. 정비 훈련 분야에서도 언리얼 엔진은 핵심 플랫폼으로 활용되고 있다. 2024년 I/ITSEC 전시회에서 공개된 FA-50 정비 훈련 시뮬레이터는 VR 환경에서 점검과 부품 교체를 실습할 수 있을 뿐만 아니라, 사용자가 직접 교육 과정을 만들 수 있도록 설계됐다. 이를 통해 기존 문서와 평면형 CBT(컴퓨터 기반 훈련), 반복 시나리오 기반의 실습 중심 교육의 한계를 극복할 대안을 제시했다. 또한 같은 행사에서 선보인 수리온 헬기 비행 시뮬레이터(VFT)는 디지털 트윈과 고해상도 시각화를 통해 실제 기체 성능과 지형 정보를 반영한 몰입형 훈련 환경을 제공했다.   ▲ FA-50 비행 시뮬레이션의 디스플레이 장면(이미지 출처 : KAI)   시뮬레이션·시스템 개발에서 언리얼 엔진의 기여도 언리얼 엔진 도입 이후 KAI의 시뮬레이션 제작 파이프라인에는 큰 변화가 있었다. 데이터스미스를 활용해 카티아 등 설계 도구의 3D 모델을 쉽게 불러올 수 있어, 실제 설계 기반의 가상 조종석과 기체 모델을 빠르게 구축하고 별도의 모델링 없이 제작 시간을 줄일 수 있었다. 또한 자체 개발한 비행역학 엔진과 항공전자 시뮬레이션 소프트웨어를 언리얼 엔진과 실시간으로 연동해, 백엔드 시스템과 시각화 프론트엔드를 효과적으로 통합함으로써 전반적인 생산성이 향상되었다. 특히 조종사가 시각과 청각 정보를 통해 상황을 판단하는 VR 시뮬레이터 개발에서는 언리얼 엔진의 렌더링, 사운드, 애니메이션 기능이 핵심 도구로 사용되었다. 물리 기반 렌더링(PBR)은 금속, 유리, 계기판 등 재질을 사실적으로 구현했으며, 파티클 시스템과 머티리얼 노드를 통해 연기, 공기 왜곡 등의 시각 효과도 유연하게 조정할 수 있었다. 사운드 역시 메타사운드를 통해 엔진 RPM이나 환경 변화에 따라 실시간으로 반응하며, 조종사에게 실제 비행과 유사한 감각을 제공했다. 또한 애니메이션 블루프린트를 활용해 조종간, 계기판, 비행 제어면 간 연동 애니메이션의 비주얼을 직관적으로 구현할 수 있었으며, 스카이 애트머스피어, 볼류메트릭 클라우드, 하이트 포그 등의 기능은 대기 표현과 공간 인식 훈련의 몰입감을 높였다. 지형 구현에서도 언리얼 엔진의 LWC(Large World Coordinates)를 통해 수천 km 단위의 지형에서도 고속 이동 시 정밀도를 유지할 수 있었고, 풀 소스 코드를 활용해 AI 훈련 체계에 맞는 좌표 변환, 시스템 연동, 정밀 지형 구조를 구현할 수 있었다. 이 과정에서 실제 지형 데이터, 항공 사진, 고도 정보를 언리얼 엔진에 통합했고, GIS, DEM 기반의 정밀 지형 정보를 효과적으로 활용해 복잡한 비행 경로, 저공 비행 훈련, 목표 탐색 등 고난도 시나리오도 현실감 있게 구현할 수 있었다. 그 결과 KAI는 초대형 지형 데이터, 초정밀 위치 기반 훈련, 외부 시스템과의 정밀한 좌표 연동을 모두 만족하는 차세대 항공기 시뮬레이터 플랫폼을 성공적으로 구축할 수 있었다. 이외에도 다양한 플러그인, 하드웨어 인터페이스, 형상 관리 툴 연동, 이제는 리얼리티스캔으로 변경된 리얼리티캡처, 마켓플레이스 등을 활용하여 프로젝트 확장성과 콘텐츠 제작 유연성이 높아졌다.   ▲ 애니메이션 블루프린트를 활용해 구현한 조종간(이미지 출처 : KAI)   대규모 전술 훈련을 위한 AI 에이전트를 언리얼 엔진에 도입 KAI는 차세대 전술 훈련 시뮬레이터 개발을 위해 강화학습 기반의 AI 에이전트를 실제 훈련 시나리오에 연동하는 작업을 진행 중이다. 특히, 복잡한 전장 환경에서는 다양한 무기 체계와 플랫폼이 동시에 운용되기 때문에, 이를 하나의 시뮬레이션 공간에서 유기적으로 연동하는 기술이 매우 중요하다. 기존 상용 시뮬레이터 설루션의 경우 외부 시스템 연동이나 커스터마이징에 제약이 많지만, 언리얼 엔진은 C++ 기반의 풀 소스 코드 접근이 가능해 이러한 한계를 극복할 수 있다. KAI는 이러한 개방성을 바탕으로 자체 개발한 AI 에이전트를 정밀하게 통합해, 복잡한 상호작용이 필요한 전술 훈련 시나리오에서도 실질적인 이점을 확보할 수 있었다. 이와 같은 통합은 단순히 AI를 활용하는 수준을 넘어, 인간 조종사와 AI가 동일한 시뮬레이션 환경에서 훈련하고 상호 작용할 수 있는 구조를 의미한다. 기존의 설루션으로는 구현하기 어려웠지만 KAI는 언리얼 엔진을 도입해 이를 실현할 수 있었다. 결과적으로 언리얼 엔진은 AI, 실시간 시뮬레이션, 데이터 피드백이 통합된 플랫폼을 제공하며, KAI의 차세대 전술 훈련체계 구현에 핵심 역할을 하고 있다.   ▲ 지형 데이터 통합으로 구현한 대규모 도시 지역 디지털 트윈(이미지 출처 : KAI)   향후 시뮬레이션 에코시스템의 방향과 KAI의 비전 향후 시뮬레이션 에코시스템은 개방성, 지속 가능성, 개인화를 중심으로 발전해 나갈 것이다. AI와 빅데이터를 기반으로 한 맞춤형 훈련 시스템, 클라우드 환경에서의 지리적 제약 없는 고성능 시뮬레이션 그리고 VR/AR, 웨어러블 기술 등을 활용한 몰입형 실시간 피드백 시스템이 표준이 되어갈 것으로 전망된다. 이러한 변화 속에서 KAI는 기술 통합형 플랫폼과 자체 시뮬레이션 에코시스템을 구축하며, 대한민국 시뮬레이션 산업의 지속 가능한 성장 기반을 마련할 예정이다. 언리얼 엔진을 단순한 개발 툴이 아닌 시뮬레이션 엔진으로 활용하며, 플랫폼을 중심으로 고퀄리티 콘텐츠를 빠르게 생산할 수 있는 시뮬레이션 콘텐츠 파이프라인을 개발 중이다. KAI의 비전은 국내를 넘어 글로벌 시뮬레이션 에코시스템과 연결되는 것이다. 언리얼 엔진의 개방성과 기술력을 바탕으로 산업 전반에 걸쳐 공유 가능한 시뮬레이션 플랫폼을 만들고, 이를 통해 다양한 산업, 기관, 개발자가 협력할 수 있는 건강하고 확장 가능한 에코시스템을 조성하는 것이 목표다. 이러한 방향성과 비전을 바탕으로, KAI는 시뮬레이션 기술을 단순한 훈련 도구를 넘어 제품 개발, 유지보수, 운영 효율 개선을 위한 핵심 인프라로 성장시키고자 한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-09-03
PINOKIO가 선보이는 스마트 공장 기술과 사례
생산 계획부터 운영까지 혁신하는 스마트 제조   제조 산업은 빠르게 변화하고 있으며, 이에 따라 생산성 향상과 유연한 운영을 위한 혁신이 요구되고 있다. 스마트 제조는 이러한 요구를 충족시키는 해답으로, 특히 생산 계획과 운영 단계의 최적화는 전체 공정 효율성에 큰 영향을 미친다. 이번 호에서는 스마트 제조 구현을 위한 핵심 전략으로서 생산 계획 및 운영을 혁신할 수 있는 ‘PINOKIO(피노키오)’ 설루션을 제시한다.   ■ 자료 제공 : 이노쏘비, www.pinodt.com   제조 산업 전반에서 디지털 트윈 기술이 핵심 전략으로 떠오르고 있다. 차세대 물류 디지털 트윈 설루션을 지향하는 PINOKIO는 최신 기술 흐름을 반영해 개발된 설루션으로, 기존 상용 시스템이 지닌 한계를 극복하고 스마트 제조 전환을 가속화하는 데 최적화된 기능을 제공한다. 기존의 디지털 전환(DX) 설루션이 주로 3D 모델링 및 시뮬레이션 등 기초 단계의 디지털 트윈 기술에서 출발한 반면, PINOKIO는 개발 목적을 현장의 대용량 데이터를 기반으로 실시간 물류 모니터링과 시뮬레이션 제공을 목표로 설계되었다. 이러한 기술적 차별성을 바탕으로 PINOKIO는 SK하이닉스, LG전자 등 대규모 혼류 생산 제조 현장에서 정합성과 예측 정확도 측면에서 검증을 완료했으며, 실제 도입을 통해 생산성과 운영 효율성 향상 등 실질적 성과를 입증했다. 최근에는 고성능 시뮬레이터까지 제품 라인업에 포함되면서, 기존 상용 설루션 대비 향상된 성능과 확장성을 갖춘 디지털 트윈 시스템으로 자리매김하고 있다. PINOKIO는 앞으로도 다양한 산업군의 요구에 대응하며, 제조업의 스마트화를 실현하는 핵심 플랫폼으로의 성장을 이어갈 계획이다.   제품 소개 AI 기반 제조 물류 혁신을 위한 디지털 트윈 플랫폼 PINOKIO는 전통적인 시뮬레이션을 넘어 시뮬레이터, 디지털 트윈, AI 에이전시를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다.  PINOKIO는 세 가지의 핵심 모듈로 구성된다. 첫 번째, 물류 시뮬레이터 설루션 ‘Pino SIM(피노 SIM)’이다. 이는 공정 흐름 설계부터 시뮬레이션, 결과 분석까지 지원하는 시뮬레이터로, ‘Pino Editor(피노 에디터)’라는 내장 도면 편집기와 레이아웃 설계 도구를 포함한다. 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 포괄적인 기능을 제공한다. 두 번째, 실시간 디지털 트윈 설루션 ‘Pino DT(피노 DT)’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과 인터페이스하여 대용량 데이터를 실시간으로 수집·처리하며, 실시간 모니터링, 미래 예측, 예지 보전 시뮬레이션까지 가능하다. 이는 생산 현장의 가시성과 대응력을 높이고 의사결정에 도움을 준다. 세 번째는 인공지능 기반의 ‘Pino AI(피노 AI)’다. 대규모 언어 모델(LLM)과 전문 특화 언어 모델(sLLM)을 활용한 대화형 UI를 통해 사용자는 데이터를 직관적으로 분석하고 의사결정에 활용할 수 있다. 또한 강화학습, 파라미터 최적화 등 다양한 AI 기법이 적용 가능해, 생산성과 품질 향상을 동시에 실현할 수 있다. 확장성 면에서도 PINOKIO는 주목할 만하다. 최근에는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과의 연동을 지원하며, 파이썬(Python) 기반 개발 환경 확장도 가능해 사용자 맞춤형 라이브러리 개발이 용이하다. PINOKIO 설루션을 통해 제조 기업은 공정 및 물류의 사전 최적화, 실시간 생산 모니터링, 미래 예측, AI 기반 고도화 등 다양한 지능형 서비스를 구현할 수 있다.   PINOKIO의 특징 Pino SIM은 디지털 트윈 구축 시 미래 예측 시뮬레이터 역할을 수행할 뿐만 아니라, 공장 신설이나 생산 라인 변경 등 제조 현장의 변화가 필요한 상황에서 사전 물류 계획 수립과 최적 레이아웃 구성을 지원한다. 이를 통해 공정의 효율성과 안정성 확보를 가능케 하며, 제조 현장의 디지털 전환을 실질적으로 이끄는 핵심 도구로 자리잡고 있다.   그림 1. Pino SIM 작업 과정   Pino DT는 자체 개발한 최적화 시뮬레이션 및 모니터링 엔진을 기반으로, 실시간 데이터에 기반한 정밀한 의사결정과 미래 예측을 가능하게 하는 디지털 트윈 설루션이다. 특히, 시뮬레이션 이벤트 처리 횟수를 최소화한 구조로 설계되어, 불필요한 연산을 줄이고 대용량 데이터를 빠르고 효율적으로 처리할 수 있다는 점이 강점이다. 이를 통해 공정 변화나 예기치 못한 상황에도 유연하게 대응할 수 있으며, 작업자 개입 등 현장의 변수까지 반영한 고도화된 시뮬레이션이 가능하다. Pino DT는 실시간 운영 최적화와 미래 예측을 동시에 수행함으로써, 제조 현장의 민첩성과 안정성을 획기적으로 향상시키는 차세대 디지털 트윈 기반 물류 설루션으로 주목받고 있다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-08-04
PINOKIO : 스마트 제조의 실현 위한 물류 디지털 트윈 설루션
개발 및 공급 : 이노쏘비 주요 특징 : 제조 물류 전반에 걸친 시뮬레이터/디지털 트윈/AI 에이전시의 통합 플랫폼, 설계~운영 과정의 최적화 지원, 다양한 제조 운영 시스템과 실시간 연동으로 대용량 데이터를 수집 및 처리, LLM/sLLM을 활용해 직관적인 데이터 분석 및 의사결정 지원 등 사용 환경(OS) : 윈도우 10/11(64비트) 시스템 권장 사양 : 인텔 i5 10세대 이상 또는 AMD 라이젠 5 이상 CPU, 최소 16GB RAM(32GB 권장), 엔비디아 RTX 4060 이상 GPU(AI 기능 사용 시 필요), 30GB 이상 여유 저장공간   최근 제조 기업들은 디지털 트윈 기반의 스마트 공장 도입과 더불어 급속한 디지털 전환(DX)을 위해 노력하고 있다. 불과 몇 해전만 하더라도 그 실체와 사례에 대해 의문이 있었지만, 다양한 도입 사례와 성과가 공개되면서 이제는 DX에서 나아가 AI 기술 도입과 AI로의 전환(AX : AI Transformation)을 활발히 검토하고 있고, 적극적인 도입 의사를 밝히고 있다. ‘PINOKIO(피노키오)’는 최신 기술 흐름을 반영해 탄생한 차세대 물류 디지털 트윈 설루션으로, 기존 상용 시스템의 한계를 극복하고 제조 산업의 스마트화를 가속화하는데 최적화된 해답을 제시한다. 기술 대전환의 시대를 맞아 기존의 전통적인 DX 설루션 기업들은 3D 모델링 및 시뮬레이션 등 낮은 단계의 디지털 트윈 기술을 기반으로 DX 설루션으로 개선 및 확장하고 있다. 이와 달리, PINOKIO는 초기부터 현장의 대용량 데이터 기반 실시간 물류 모니터링 및 실시간 시뮬레이션을 제공하는 디지털 트윈 기반의 운영 시스템을 목적으로 출발하였다. 그 결과 SK 하이닉스, LG전자 등 대량의 혼류 생산 제조 현장에서 디지털 트윈의 정합성과 예측의 정확도 등을 검증받았고 도입 효과를 증명했다. 이를 바탕으로 최근에는 기존 상용 설루션보다 높은 성능의 시뮬레이터까지 라인업하여 다양한 요구를 충족시킬 수 있게 되었다. 기존 상용 물류 시뮬레이션 설루션은 대부분 20~30년 전 개발된 구조를 가지고 있어, 최신 IT/OT 시스템과의 연동과 AI 기술을 적용하기 어렵다. 이로 인해 대용량 데이터 처리에 한계가 있으며, 사용자 API(애플리케이션 프로그래밍 인터페이스) 미제공으로 커스터마이징과 타 시스템 연계, 현장 실시간 운영에 필요한 유연성과 확장성에서도 제약이 있다. PINOKIO는 이러한 기존 설루션의 문제점을 개선해 제조 물류 관련 다양한 AI 모델을 지원하며, 기존 설루션 대비 높은 모델링 속도를 구현할 수 있다. 그리고 멀티 스레드, GPU 기반의 고속 시뮬레이션 연산 기능과 2차전지, AMR(자율이동로봇), OHT(오버헤드 트랜스퍼), 자동창고 등 다양한 제조 환경에 맞는 특화 라이브러리를 제공한다. 특히, 생산 현장에서 발생하는 실시간 빅데이터를 효과적으로 처리하고, 대화형 어시스턴트(assistant) 방식의 직관적인 사용자 인터페이스(UI)를 통해 사용자 편의성을 높였다. 또한, 사용자 API를 통한 고도화된 커스터마이징이 가능하며, MES(제조 실행 시스템), 센서, PLC(프로그래머블 로직 컨트롤러), IoT(사물인터넷) 등 다양한 운영 시스템과의 실시간 연동 기능도 갖췄다. 나아가, 전력 사용량 분석과 탄소세 예측 기능까지 탑재돼 지속 가능한 제조 환경 구축을 위한 의사결정도 지원한다. PINOKIO는 AI 기반 제조 혁신의 길을 여는 실질적인 도구로, 앞으로 제조업계의 디지털 전환을 선도할 핵심 설루션으로 자리매김할 전망이다.   주요 기능 소개 PINOKIO는 시뮬레이터, 디지털 트윈, AI 에이전시(agancy)를 통합한 차세대 DES(이산 이벤트 시뮬레이션) 기반 플랫폼으로, 제조 물류 전반에 걸친 통합 설루션을 제공한다. PINOKIO는 세 가지 핵심 모듈로 구성된다. 첫 번째는 ‘Pino SIM’으로, 공정 흐름 설계부터 시뮬레이션, 분석까지 수행하는 시뮬레이터다. Pino SIM은 도면 편집과 레이아웃 설계를 위한 Pino Editor를 내장하고 있어, 단순한 시뮬레이션을 넘어 제조 기준정보 입력, 물류 시나리오 구성, 시뮬레이션 실행 및 시각화 분석까지 다양한 기능을 제공한다. 이를 통해 설계 초기 단계부터 실제 운영에 이르기까지 전 과정의 최적화를 효과적으로 지원한다. 두 번째는 실시간 디지털 트윈 모듈인 ‘Pino DT’다. MES, IoT, PLC, 센서 등 다양한 제조 운영 시스템과의 실시간 연동을 통해 대용량 데이터를 실시간으로 수집하고 처리하며, 이를 바탕으로 실시간 모니터링은 물론 미래 상황 예측, 예지 보전 기반의 시뮬레이션이 가능하다. 이는 생산 현장의 가시성과 민첩성을 높이는 데 기여한다. 세 번째는 인공지능 기반의 ‘Pino AI’다. LLM(대규모 언어 모델)과 sLLM(전문 도메인 특화 언어 모델)을 활용한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다. 또한 목적에 따라 강화학습, 파라미터 최적화 등 다양한 AI 기법을 적용할 수 있어 생산성과 품질 향상을 동시에 도모할 수 있다. PINOKIO는 엔비디아 옴니버스(NVIDIA Omniverse)와 같은 고급 시각화 플랫폼과 연동 가능하며, 파이썬(Python) 개발 환경 확장도 지원함으로써 사용자 맞춤형 라이브러리 개발이 가능하다. 이를 통해 제조 기업은 사전 공정 및 물류 최적화는 물론 실시간 생산 모니터링, 미래 예측, AI 기반 정확도 향상 등 다양한 지능형 서비스를 구현할 수 있다. 제조업의 디지털 전환이 본격화되는 시대에 PINOKIO는 스마트 공장을 넘어 AI 전환을 실현하는 핵심 파트너로 부상하고 있다.   PINOKIO의 특징 PINOKIO는 고도화된 시뮬레이션 엔진과 AI 통합 기능을 바탕으로 대규모 데이터 처리 및 실시간 예측 분석을 지원하며 스마트 제조 시대의 경쟁력을 강화하고 있다. PINOKIO는 이벤트 처리 기법 최적화 및 단순화된 시뮬레이션 엔진 설계로 빠른 연산 속도를 제공한다. 특히, 초당 60프레임(FPS) 기준으로 500만 개 수준의 대규모 3D 데이터를 안정적으로 처리할 수 있으며, 선택적 컴파일 방식(C# 기반 네이티브 코드)을 활용한 별도 계산 도구를 통해 집약적인 연산 작업도 고속으로 수행할 수 있다. 디지털 트윈 구축에서도 PINOKIO는 강력한 성능을 발휘한다. MES, ACS, MCS 등 다양한 제조 운영 시스템과 연동과 IoT, 센서, PLC 등 생산 현장에서 수집되는 대용량 데이터를 실시간으로 처리한다. 이를 통해 실시간 모니터링과 동시에 백그라운드 시뮬레이션을 수행하고, 타임 호라이즌(Time Horizon) 방식의 미래 예측 기술을 통해 병목, 이상 징후 탐지 및 알람 기능도 제공된다. 또한, AI를 활용하기 위한 정상/이상 데이터 제공과 파라미터 최적화 및 시나리오별 분석 기능이 포함되어 있으며, LLM과 sLLM, 챗GPT(ChatGPT), 메타 라마(Meta LLaMA) 등 다양한 AI 모델을 통합한 AI 에이전시 기능을 통해 대화형 데이터 분석, 자동 의사결정 지원, 데이터 해석 및 운영 최적화를 구현한다. 시뮬레이션 설계 및 모델링 측면에서도 사용자 편의성이 강화됐다. Pino Editor를 활용해 레이아웃 도면을 직관적으로 확인 및 편집할 수 있으며, 제조 기준 정보 입력 및 템플릿 매칭 기능을 통해 모델링 작업 시간을 획기적으로 단축시킨다. 또한, 2차전지 및 반도체 공정에 특화된 전용 라이브러리도 제공되며, 고객 맞춤형 커스터마이징 시뮬레이터를 통해 사용자의 목적에 따라 분석 및 최적화가 가능한 유연한 개발 환경을 지원한다. 이처럼 PINOKIO는 고속 시뮬레이션, 실시간 예측, AI 기반 의사결정, 그리고 유연한 모델링 기능을 종합적으로 제공하며, 제조업의 지능화·자동화를 실현하는 설루션이다.   그림 1. PINOKIO UI 화면 – 반도체 FAB   사전 레이아웃 및 물류 검토를 위한 설루션 : Pino SIM 디지털 트윈 구축 시 미래 예측을 위한 시뮬레이터 역할과 기존 상용 설루션과 같이 공장 신축 또는 생산 라인 변경 등 제조 현장의 변화가 요구된다. 이런 상황에서 Pino SIM은 사전에 최적의 물류 계획과 레이아웃 구성을 지원하고 공정의 효율성과 안정성을 미리 확보할 수 있는 디지털 전환 핵심 도구이자 가상 공장 구현 설루션이다. Pino SIM은 제조 기준 정보(제품, 공정, 레이아웃, 물류 흐름, 작업 순서, 스케줄링 등)를 기반으로 공정을 시뮬레이션하며, 그 결과를 차트, 그래프 등 다양한 시각화 도구를 통해 분석할 수 있다. 이를 통해 레이아웃 검증 및 최적화, 생산성 향상 등 공장 운용 전반의 효율화를 실현할 수 있다. 특히, OHT, AMR 등 신 산업군을 위한 특화 라이브러리를 제공하며, 이송 설비 구현을 위한 이동, 충돌 방지, 회피 제어를 위한 OCS, ACS 기능도 탑재되어 있다. 이를 통해 코드 작성 오류를 줄이고 디버깅 시간을 줄일 수 있으며, 보다 쉽고 효율적으로 시뮬레이션 모델을 구축할 수 있다. 또한, 자동창고 모델링에 필요한 Stocker(Crane, Rack, Rail)를 그룹화 형태로 제공하여 빠른 모델링이 가능하다. 환경과 에너지 측면에서도 전력 사용량 및 탄소 배출량(탄소세) 분석 기능을 통해 지속 가능한 생산 전략 수립에 도움을 주며, 제조업의 친환경화와 ESG 경영 대응에도 기여할 수 있다. 이처럼 Pino SIM은 공장 설계 단계에서의 의사결정 품질을 높이고, 새로운 제조 환경에 유연하게 대응할 수 있는 설루션이다.   그림 2. 라이브러리 제공 – Stocker   그림 3. 개발(코딩) 없이 기능 구현   그림 4. 시뮬레이션 결과 리포트 예제   디지털 트윈 설루션 : Pino DT 제조 현장에서 물류는 제품의 사이클 타임을 결정하는 요소 중에 하나이다. 물류 정체가 발생할 경우 제품의 사이클 타임이 길어지거나 라인이 정지되는 등 심각한 손실이 발생할 수 있다. 이러한 문제를 해결하기 위해 시뮬레이션을 통한 최적화된 운영 방식을 시스템에 적용하려는 노력이 이어져왔다. 기존의 물류 설루션은 현장에서 발생하는 대용량의 데이터를 시뮬레이션에 반영하여 실시간으로 의사결정하는 과정에서 다양한 제약으로 인해 어려움이 있었다. 또한, 현장 작업자의 개입과 같은 인간적 오류는 시스템이 예측할 수 없는 데이터를 발생시키기 때문에 생산 계획 단계에서의 사전 분석 및 검증만으로는 시뮬레이션 정합성을 높이는데 한계가 있다. Pino DT는 최적화된 자체 개발 시뮬레이션과 모니터링 엔진을 탑재하여 이를 해결하였다. 시뮬레이션의 이벤트 횟수를 최적화하여 최소한의 이벤트로 시뮬레이션이 가능하도록 설계했다. 또한 계산 속도에 이점이 있는 C, C++ 언어로 물류 경로를 최적화하는 알고리즘을 구현하여 기존 설루션 대비 약 2만평 규모의 공장에서 약 70배의 향상된 성능을 검증하였다.   그림 5. Pino DT의 UI 화면   대용량 데이터 처리 및 실시간 모니터링 Pino DT는 시뮬레이션에 최적화된 알고리즘을 사용함으로써 대용량 데이터 처리가 가능하고, 현장 데이터를 실시간으로 시뮬레이션에 반영할 수 있다. 기존 물류 시뮬레이션 설루션에 비해 60~700배 뛰어난 가속 성능을 제공하는 시뮬레이션 도구이다. 제조 현장과 동일한 상황을 시뮬레이션하기 위해 현장과 연동 후 데이터를 가공하여 디지털 트윈 모델로 표현하여 가시화하고, 사용자가 설정한 시간 주기마다 미래를 예측하는 시뮬레이션(proactive simulation)을 백그라운드로 수행한다. 이는 제품의 공정 시간보다 짧은 시간 안에 결과를 확인할 수 있고, AI를 통해 보다 정확한 의사결정을 내릴 수 있도록 지원한다.   그림 6. Pino DT의 모니터링 화면   디지털 트윈 실시간 시뮬레이션 : 미래 예측 실시간 현장 상황을 반영하여 미래를 예측하는 시뮬레이션(proactive simulation)은 제품의 택트 타임(tact time)보다 짧은 시간 내에 결과를 도출해내지 못하면 현장에서 선제 대응하지 못하는 결과를 초래할 수 있다. 모니터링 엔진으로부터 라인 상황에 대한 데이터를 수집하고, 현재로부터 예측하고자 하는 시간 동안 발생하는 이상상황에 대해 피드백을 준다. 예를 들어 조립 라인의 경우에는 부품이 5분 뒤에 부족하다는 알람을 작업자에게 즉시 전달하여 선제적 대응을 가능케 함으로써, 라인 정지 등 비상 상황을 사전에 방지할 수 있다. PINOKIO 디지털 트윈 시뮬레이션은 이러한 역할이 가능하도록 가속화한 고속 시뮬레이션 엔진을 보유하고 있다.   그림 7. 현장 FAB(왼쪽)과 PINOKIO에서 생성된 디지털 트윈(오른쪽)   제조 물류 현장에 특화된 AI 플랫폼 : Pino AI AI를 이용한 설루션을 만들기 위해서는 다양한 상황에 대한 데이터가 필요하다. 하지만 제조 현장의 특성 상 여러 상황에 대한 데이터를 획득하기 어렵다. PINOKIO에서는 현장에서 획득하기 어려운 데이터를 시뮬레이션을 통해 데이터를 확보할 수 있다. 즉, Pino DT 모델이 AI를 위한 데이터를 생성하고, 이를 AI가 최적 값을 도출하여 시뮬레이션에 반영한다. Pino DT에서 획득한 데이터를 파이썬, C, 자바(JAVA) 등 다양한 언어로 구현한 로직을 적용할 수 있도록 개발 환경을 제공하고 있다. 이를 통해 예측 정확도 향상, 데이터 기반 의사 결정, Scheduling, Routing, Dispatching 등 목적에 따라 AI 활용이 가능하다. 또한 LLM, sLLM, 챗GPT(ChatGPT), 메타 라마(Meta Llama) 등과 결합한 대화형 UI를 통해 사용자가 직관적으로 데이터를 분석하고 의사결정에 활용할 수 있다.   그림 8. 대화형 UI 및 결과 리포트   그림 9. Pino DT와 AI 모델 활용 원리   Pino DT와 현장 데이터 인터페이스 디지털 트윈에 가장 중요한 요소는 현장과의 연결이다. 대부분의 물류 전문 설루션이 현장과의 연결을 위한 인터페이스를 지원하지만, 많은 양의 데이터를 처리하면서 실시간으로 시뮬레이션하는데 어려움이 있다. Pino DT는 대용량 데이터 처리와 시뮬레이션 가속 성능이 뛰어나 실시간 모니터링 시스템까지 가능하다. <그림 10>은 현장에 있는 MES와 Pino DT가 인터페이스되는 과정이다. 현장에 있는 PLC가 MES에 데이터를 전달하고, MES는 그 데이터를 데이터베이스에 저장한다. 이를 Pino DT에서 외부 통신(IP)을 통해 데이터베이스에 접근하여 데이터를 시뮬레이션에 반영한다. 이 과정에서 현장 데이터의 상태가 중요하다. 불필요한 데이터가 있거나 로스 또는 시간 순서가 맞지 않은 경우가 대부분이다. Pino DT에서는 현장 데이터를 올바르게 정제하는 작업을 거쳐 현장과 동일한 디지털 트윈 모델을 만든다.   그림 10. 현장 데이터 인터페이스 과정   PINOKIO의 기대 효과 PINOKIO는 현장 운영 데이터를 실시간으로 디지털 트윈과 연동함으로써 모니터링이 가능하며, 전체 공장을 PC, 웹, 모바일 등 다양한 형태로 여러 사용자와 함께 직관적으로 확인하면서 공유하고 협업할 수 있다. 또한 현장과 연결된 디지털 트윈 모델을 이용하여, 미래에 발생 가능한 문제점을 예지(predictive)하고, 이러한 문제점을 사전에 해결하기 위한 선제대응(proactive) 의사결정을 가능하게 한다. 이 때 디지털 트윈을 이용한 사전예지는 온라인 시뮬레이션 기술에 기반하고, 선제대응은 AI 기술에 기반한다고 볼 수 있다. 디지털 트윈 기반 사전예지의 시간적 범위(time horizon)는 현장의 특성에 따라서 0.1시간~10시간으로 달라질 수 있으며, 문제점의 종류는 주로 생산 손실(loss), 부품의 혼류 비율 불균형, 설비 고장예지 및 물류 정체 등을 포함한다. 문제점이 예지되면 이를 해결하기 위한 즉각적인 의사결정 AI 기술을 활용하여 최적 운영을 달성함으로써 생산성, 경제성, 안정성 및 경쟁력 향상 효과가 있다.   맺음말 생산 계획 단계에서 Pino SIM을 통해 레이아웃 검증과 물류를 최적화하고, Pino SIM 모델 데이터를 생산 운영 단계에서 PINOKIO와 연계하여 현장 데이터 기반 실시간 모니터링과 미래 상황 예측 및 선제 대응함으로써 현실적이고 실제 활용 가능한 스마트한 디지털 트윈을 구축할 수 있다. 다음 호부터는 Pino SIM, Pino DT, Pino AI 등 각 제품별 소개 및 적용 사례를 소개하고자 한다.   그림 11. 디지털 트윈을 위한 플랜트 시뮬레이션과 PINOKIO     ■ 기사 내용은 PDF로도 제공됩니다. 
작성일 : 2025-07-01
매스웍스, ‘매트랩 엑스포 2025 코리아’에서 소프트웨어 정의 시스템 기술 혁신 제시
매스웍스가 4월 8일 ‘매트랩 엑스포 2025 코리아(MATLAB EXPO 2025 Korea)’를 개최했다고 발표했다. 행사에는 1500명 이상의 국내외 기술 전문가, 매트랩(MATLAB)과 시뮬링크(Simulink) 사용 고객이 참석해 다양한 산업 분야의 최신 기술 및 엔지니어링 트렌드를 확인했다. 이번 행사는 매스웍스의 아비 네헤미아(Avi Nehemiah) 설계 자동화 소프트웨어 부문 총괄 디렉터와 한화로보틱스 정병찬 대표이사의 기조연설로 시작됐다. 아비 네헤미아 디렉터는 기조연설에서 소프트웨어 정의 시스템(Software-defined systems)의 가치와 구현 방법을 심도 있게 다뤘다. 발표에 따르면, 모델 기반 설계(Model-Based Design)를 통해 요구사항부터 아키텍처, 기능, 구현, 테스트까지 이어지는 디지털 스레드를 구축하고, AI와 데이터 기반 기능, 클라우드 활용을 통해 하드웨어 변경 없이도 새로운 기능을 제공할 수 있다. 이러한 접근 방식은 자동차, 산업 기계, 의료 시스템 등 다양한 산업 분야에서 제품의 가치를 높이고 사용자 경험을 향상시키는 핵심 요소로 자리잡았다. 정병찬 대표이사는 ‘로봇, 혁신으로 일상과 산업을 재창조하다’라는 제목의 기조연설에서 로봇 기술의 현재와 미래를 조망했다. 정병찬 대표이사에 따르면 로봇 기술이 제조업을 넘어 서비스, 의료, 농업 등 다양한 분야로 확장되고 있다. 발표에 따르면 이러한 확장은 인공지능과 로봇 기술의 발전과 결합되어 산업 생태계에 상당한 영향을 미칠 잠재력을 갖는다. 매트랩 엑스포 2025 코리아의 기술 세션은 알고리즘 개발 및 AI, 전동화, 모델 기반 설계, AI 응용 엔지니어링, 모빌리티, 무선 및 위성 등 6개 트랙으로 구성됐다. 삼성전자, 현대자동차, SK텔레콤, 한국전력연구원 등 국내 첨단 기술 기업들이 참가해 매트랩과 시뮬링크의 활용 사례를 공유했다.     행사장의 데모 부스에서는 다양한 산업 분야의 기술이 소개됐다. 자동차 분야에서는 모델 기반 설계의 데브옵스(DevOps) 환경 통합 설루션을 전시했다. 또한 매스웍스는 요구사항 관리부터 시스템 아키텍처 설계, 소프트웨어 개발과 검증까지의 CI 환경 구축 방안을 시연했다. 무선 분야에서는 언리얼 엔진을 활용한 사실적 위성 시나리오 시각화 사례에 대한 핸즈온 데모를 통해 AI 기반 모델링 기법을 체험할 수 있게 했다. 참석자들은 정적 및 동적 검증을 위한 통합 플랫폼인 폴리스페이스(Polyspace) 제품군을 통한 코드 기반 검증 과정도 확인할 수 있었다. 아카데믹 부스에서는 세종대학교, 단국대학교, 카이스트, 인하대학교, 전북대학교, 창원대학교, 한국공학대학교 등 여러 대학의 연구 사례가 소개되었는데, 그중 인하대학교 임베디드 제어 연구실(ECL)은 ‘신속 제어 프로토타이핑 시스템 및 첨단 제어 기술’을 발표했다. 인하대학교 ECL은 자체 개발한 경량 신속 제어 프로토타이핑 시스템(LW-RCP)을 활용해 시뮬링크 기반의 블록 다이어그램 프로그래밍으로 제어 시스템을 설계하고 실시간 제어기를 구현하는 방법을 설명했다. 특히 2단 도립진자 시스템의 실시간 제어 시연에서는 최적제어와 강화학습 기반 제어를 활용한 기술을 시연했다. 매스웍스코리아의 이종민 대표는 "이번 매트랩 엑스포는 참석자들과 함께 국내 엔지니어링 분야의 미래를 확인할 수 있는 뜻깊은 행사였다”면서, “매스웍스는 앞으로도 AI, 전동화, 모빌리티 등 다양한 산업 분야의 기술 발전을 지원해 국내 산업의 경쟁력 강화에 기여할 것"이라고 전했다.
작성일 : 2025-04-08
스노우플레이크, 앱 성성 도구에서 딥시크-R1 프리뷰 지원
스노우플레이크가 자사의 생성형 AI 기반 애플리케이션 생성 도구인 ‘코텍스 AI(Cortex AI)’에서 ‘딥시크-R1(DeepSeek-R1)’ 모델을 지원한다고 밝혔다. 딥시크-R1은 지도학습(SFT) 없이 대규모 강화학습(RL)만으로 훈련된 오픈소스 모델로 자체검증, 스스로 답을 찾는 추론하는 사고체계(CoT), 추론 생성 등이 가능하다. 딥시크-R1은 스노우플레이크 코텍스 AI를 통해 서버리스 추론에 사용할 수 있는 비공개 프리뷰 형태로 제공된다. 배치(SQL 함수)와 대화형(파이썬 및 REST API) 모두를 통해 액세스할 수 있어 기존 데이터 파이프라인, 애플리케이션 및 통합 개발 환경(IDE)에 통합된다. 코텍스 AI는 고객이 코텍스 가드(Cortex Guard)를 활성화할 수 있도록 해 잠재적으로 유해한 콘텐츠를 필터링하고, 고객이 생성형 AI 애플리케이션을 대규모로 안전하게 배포할 수 있도록 한다. 스노우플레이크는 모델이 안전한 서비스 범위 내에서만 작동하고 고객 데이터가 모델 제공자와 공유되지 않도록 보장한다고 소개했다. 또한, 모델이 정식 출시되면 고객은 역할 기반 액세스 제어(RBAC)를 통해 딥시크-R1에 대한 접근을 설정해 거버넌스를 관리할 수 있다고 덧붙였다. 현재 미국 내 고객의 스노우플레이크 계정에서 사용할 수 있다. 스노우플레이크 코텍스 AI는 대규모 언어 모델(LLM) 추론, 파인튜닝, 검색 기반 생성(RAG) 기능을 포함한 종합 툴 세트를 제공하고 있다. 이를 통해 정형 및 비정형 데이터를 함께 분석하고 AI 기반 애플리케이션을 쉽게 구축할 수 있다. 메타, 미스트랄, 스노우플레이크를 포함한 주요 오픈소스 및 폐쇄형 LLM 모두 지원함으로써 간편하게 AI를 통합할 수 있게 한다. 스노우플레이크 AI 연구팀은 “딥시크-R1의 추론 비용을 추가로 절감해 고객에게 더 큰 비용 대비 성능 효율성을 제공할 계획”이라면서, “딥시크-R1을 통해 기업은 최첨단 AI 기술을 기반으로 한 생성형 AI 애플리케이션을 보다 빠르게 제공함으로써 생태계에서 혁신의 새로운 표준을 제시하게 될 것”이라고 말했다.
작성일 : 2025-02-05
매스웍스코리아, ‘제4회 매트랩 대학생 AI 경진대회’ 수상자 발표
매스웍스는 국내 대학생들의 인공지능(AI) 기술 활용 능력 개발을 지원하는 ‘제4회 매트랩 대학생 AI 경진대회’ 수상자를 발표했다. 많은 학생들이 뛰어난 기술 역량과 창의성을 기반으로 매트랩(MATLAB)을 활용한 AI 모델을 구현한 가운데 부산대학교 전기전자공학과 학생들로 구성된 ‘전지적 레이더 시점’ 팀이 최우수상을 수상했다. 2021년에 시작된 ‘매트랩 대학생 AI 경진대회’는 매년 국내 대학생들의 AI 기술 활용 능력과 전문 분야별 경쟁력 강화를 지원해 왔다. 올해 참가자들은 1인 가구, 고령화, 교통, 환경 등 사회 변화에 대응하는 시의성 높은 프로젝트를 제출했다. 또한 다수의 참가자들이 AI를 활용해 사회 문제를 해결할 수 있는 효과적인 솔루션을 제시하며 실질적 응용 가능성과 기술적 우수성을 동시에 선보였다.  매스웍스코리아의 김경록 교육 기관 세일즈 매니저는 “이번 대회의 참가자들은 사회적 약자 지원, 교통 안전, 기후 대응 등 사회적 가치를 창출할 수 있는 다양한 프로젝트를 제출했다”면서, “매스웍스의 소프트웨어를 활용해 완성도를 높이고, 최근 공학 분야 트렌드에 맞춰 AI기술을 적극 활용한 아이디어를 제시한 점이 고무적이었다”고 말했다.     부산대학교 전지적 레이더 시점팀(전민욱, 박나윤, 신다민, 박도현, 김연호)은 노년층이나 보행이 불편한 사람들의 안전한 일상을 지원하는 ‘낙상 감지를 위한 레이더 기반 인간 행동 인식 시스템’으로 1등상을 수상했다. 학생들은 매트랩을 활용해 데이터 준비에서부터 하드웨어 배포까지 AI 모델링 워크플로의 전 영역에서 우수한 성과를 도출했다. 또한, 부산대 팀은 AI 모델 성능 향상을 위해 직접 실험을 통해 데이터를 수집하고, 입력 훈련 데이터와 비슷한 특징을 갖는 데이터를 생성할 수 있는 조건부 생성적 적대 신경망(CGAN)이라는 생성형 AI 모델을 활용해 데이터 불균형 문제를 해결했다. 심사단은 프로젝트에서 고안된 LED 점등 및 문자 메시지 전송 기능을 고령화로 인해 증가한 노인 낙상 사고에 대응할 수 있는 참신한 아이디어라고 평가했다. 전지적 레이더 시점팀의 전민욱 대표는 “매트랩이 제공하는 다양한 툴박스를 활용해 레이더 신호의 전처리와 데이터 분석을 효과적으로 수행하고, 복잡한 딥러닝 프로세스를 보다 직관적으로 다룰 수 있었다”면서, “특히 매트랩의 다양한 신경망 코드를 활용해 복잡한 신경망 모델을 쉽게 적용할 수 있어 큰 도움을 받았다”고 말했다. 2등 상을 수상한 세종대학교 기계항공우주공학부 학생들로 구성된 AIV팀(정진영, 윤정호)은 시뮬링크(Simulink)와 다양한 툴박스를 활용해 강화학습 기반의 로봇 회피 제어 모델을 구현해 로봇의 주행 안전성과 실내 환경 적응 능력을 입증했다. 해당 모델은 청소기, 서빙 로봇 등 스마트 AI 로봇 개발에 활용 가능할 것으로 기대된다. 3등 상을 수상한 한국기술교육대학교 메카트로닉스공학부 생산시스템전공생들로 구성된 AIM LAM팀(김호진, 박지원)은 1차원 컨벌루션(1D-Convolution) 모델을 사용해 리니어 모션(LM) 가이드의 고장을 효과적으로 검출하는 시스템을 개발했다. 출품작은 설명가능한 인공지능(Explainable AI)을 적용해 개발 완성도를 높였으며, 단순한 구조로 모델을 개발해 속도성과 유지보수 측면에서 산업 현장에 적용 가능성이 매우 높다는 차별점을 갖췄다. 매스웍스코리아의 이종민 대표는 “매스웍스는 대학생들이 참여할 수 있는 다양한 경진대회를 주최 및 후원하며 국내 공학 계열의 미래 인재를 양성하는 데에 지속적인 노력을 쏟고 있다”면서, “매스웍스 주최의 대학생 AI 경진대회에서 국내 대학생들의 혁신적인 기술 아이디어와 실용성 높은 프로젝트를 통해 매트랩 및 시뮬링크에 대한 높은 이해도를 확인하게 되어 기쁘다”고 말했다.
작성일 : 2024-10-15
[무료다운로드] 생성형 AI 데이터 학습에 사용되는 딥러닝 강화학습의 개념과 구조
BIM 칼럼니스트 강태욱의 이슈 & 토크   이번 호에서는 생성형 AI 모델 학습과 같이 현재도 다양한 곳에서 필수로 사용되는 강화학습 딥러닝 기술의 기본 개념, 이론적 배경, 내부 작동 메커니즘을 확인한다.   ■ 강태욱 건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다. 이메일 | laputa99999@gmail.com 페이스북 | www.facebook.com/laputa999 홈페이지 | https://dxbim.blogspot.com 팟캐스트 | http://www.facebook.com/groups/digestpodcast   강화학습은 바둑, 로봇 제어와 같은 제한된 환경에서 최대 효과를 얻는 응용분야에 많이 사용된다. 강화학습 코딩 전에 사전에 강화학습의 개념을 미리 이해하고 있어야 제대로 된 개발이 가능하다. 강화학습에 대해 설명한 인터넷의 많은 글은 핵심 개념에 대해 다루기보다는 실행 코드만 나열한 경우가 많아, 실행 메커니즘을 이해하기 어렵다. 메커니즘을 이해할 수 없으면 응용 기술을 개발하기 어렵다. 그래서 이번 호에서는 강화학습 메커니즘과 개념 발전의 역사를 먼저 살펴보고자 한다. 강화학습 개발 시 오픈AI(OpenAI)가 개발한 Gym(www.gymlibrary.dev/index.html)을 사용해 기본적인 강화학습 실행 방법을 확인한다. 참고로, 깃허브 등에 공유된 강화학습 예시는 대부분 게임이나 로보틱스 분야에 치중되어 있는 것을 확인할 수 있다. 여기서는 CartPole 예제로 기본적인 라이브러리 사용법을 확인하고, 게임 이외에 주식 트레이딩, 가상화폐, ESG 탄소 트레이딩, 에너지 활용 설비 운영과 같은 실용적인 문제를 풀기 위한 방법을 알아본다.   그림 1. 강화학습의 개념(출처 : Google)   강화학습의 동작 메커니즘 강화학습을 개발하기 전에 동작 메커니즘을 간략히 정리하고 지나가자.   강화학습 에이전트, 환경, 정책, 보상 강화학습의 목적은 주어진 환경(environment) 내에서 에이전트(agent)가 액션(action)을 취할 때, 보상 정책(policy)에 따라 관련된 변수 상태 s와 보상이 수정된다. 이를 반복하여 총 보상 r을 최대화하는 방식으로 모델을 학습한다. 정책은 보상 방식을 알고리즘화한 것이다. <그림 2>는 이를 보여준다. 이는 우리가 게임을 하며 학습하는 것과 매우 유사한 방식이다.   그림 2. 강화학습 에이전트, 환경, 액션, 보상 개념(출처 : towardsdatascience)   강화학습 설계자는 처음부터 시간에 따른 보상 개념을 고려했다. 모든 시간 경과에 따른 보상치를 동시에 계산하는 것은 무리가 있으므로, 이를 해결하기 위해 DQN(Deep Q-Network)과 같은 알고리즘이 개발되었다. 모든 강화학습 라이브러리는 이런 개념을 일반화한 클래스, 함수를 제공한다. 다음은 강화학습 라이브러리를 사용한 일반적인 개발 코드 패턴을 보여준다.   train_data, test_data = load_dataset()  # 학습, 테스트용 데이터셋 로딩 class custom_env(gym):  # 환경 정책 클래스 정의    def __init__(self, data):       # 환경 변수 초기화    def reset():       # 학습 초기 상태로 리셋    def step(action):       # 학습에 필요한 관찰 데이터 변수 획득       # 액션을 취하면, 그때 관찰 데이터, 보상값을 리턴함 env = custom_env(train_data)  # 학습환경 생성. 관찰 데이터에 따른 보상을 계산함 model = AgentModel(env)      # 에이전트 학습 모델 정의. 보상을 극대화하도록 설계 model.learn()                       # 보상이 극대화되도록 학습 model.save('trained_model')    # 학습된 파일 저장 # 학습된 강화학습 모델 기반 시뮬레이션 및 성능 비교 env = custom_env(test_data)  # 테스트환경 생성 observed_state = env.reset() while not done:    action = model.predict(observed_state) # 테스트 관찰 데이터에 따른 극대화된 보상 액션    observed_state, reward, done, info = env.step(action)    # al1_reward = env.step(al1_action) # 다른 알고리즘에 의한 액션 보상값과 성능비교    # human_reward = env.step(human_action) # 인간의 액션 보상값과 성능비교   ■ 상세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-03-05
[칼럼] 챗GPT가 모든 것을 바꾼다
디지털 지식전문가 조형식의 지식마당   요즘 세계적으로는 ‘챗GPT(ChatGPT)’ 열풍이 대단하다. 이것은 메타버스 열풍과는 좀 다르다. 메타버스 열풍은 특정 몇몇 사람과 미디어에서 선도된 경향과 직접 관계도 없는 NFT 및 ESG가 끼면서 사용자의 관심이 급격히 냉각하였다. 그러나 챗GPT 열풍은 사용자로부터 오는 것이다. 사람마다 차이는 있겠지만, 이것은 나의 47년 디지털 삶에 있어서 컴퓨터, PC, 인터넷, 스마트폰 같은 급의 충격이라고 생각된다. 챗GPT에 대해서 격하게 반응하는 세 종류의 사람들이 있다. 챗GPT가 자신에게 엄청난 기회가 왔다고 생각하는 사람들이다. 꿈 깨야 한다. 모든 사람들에게 기회이자 위협이다. 챗GPT가 놀랍지만, 못하는 것을 찾아서 떠드는 사람들이다. 인공지능 자체를 모르는 사람들이다. 인공지능이 항상 정답을 말한다는 잘못된 인식이 우리 사회에 있다. 인공지능에 엄청난 오답이 있다. 그것을 지속적으로 발전해 가는 것이 인공지능의 비전이다. 챗GPT가 가짜뉴스와 비도덕적이 될 수 있다고 하는 두려워하는 사람들이다. 현재도 가짜 뉴스를 퍼뜨리는 것은 기계가 아니라 사람이다. 당장 유튜브에도 엄청나게 많은 가짜뉴스와 비도덕적인 내용이 있다.   그림 1. 챗GPT(이미지 출처 : 오픈AI)   결론적으로 모든 AI의 책임은 컴퓨터나 소프트웨어 아니라 사람이다. 그리고 AI에서 나온 정보도 사용할 것인가 아닌가 역시 인간인 우리들의 몫이다. 인공지능이 발전할 수록 인간의 자연지능(natural intelligence)과 결합된 증강지능(augmented intelligence)이 필요하다고 생각한다. 챗GPT는 GPT-3.5를 기반으로 하는 대화형 인공지능 챗봇이다. 챗GPT는 오픈AI(OpenAI)가 개발한 프로토타입 대화형 인공지능 챗봇이다. 챗GPT는 대형 언어 모델 GPT-3의 개선판인 GPT-3.5를 기반으로 만들어졌으며, 지도학습(supervised learning)과 강화학습(reinforcement learning)을 모두 사용해 파인 튜닝되었다. 챗GPT는 생성 사전교육 트랜스포머(Generative Pre-trained Transformer) 와 챗(chat)의 합성어이다. 챗GPT는 2022년 11월 프로토타입으로 시작되었으며, 다양한 지식 분야에서 상세한 응답과 정교한 답변으로 인해 집중받았다. 다만, 정보의 정확도는 중요한 결점으로 지적되고 있다. 다른 챗봇들과 달리 챗GPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 모종의 보고서나 실제로 작동하는 파이썬 코드를 비롯해 인간과 같은 상세하고 논리적인 글을 만들어 낼 수 있다. 일부 저술가는 챗GPT가 놀라울 만큼 인간적이고 상세한 글을 생성할 수 있으며, 이 문제가 학계에서 심각한 문제가 될 수 있다 평가했다. 전작인 ‘인스트럭트GPT(InstructGPT)’에 비해 챗GPT는 위험하고 부정직한 답변을 가능한 한 회피하도록 설계되었다.   그림 2. 챗GPT의 경쟁자들이 몰려온다.   메릴랜드 대학의 부교수인 톰 골드스타인(Tom Goldstein)은 작년 12월에 트위터로 챗GPT를 하루 실행하는 비용이 10만 달러(약 1억 2000만 원) 정도로 추정한다고 했다. 현재는 얼마나 올랐을까? 챗GPT로 올해 2억 달러(약 2462억 원), 2024년 말까지 10억 달러(약 1조 2300억 원)의 매출을 올릴 것으로 예상된다고 한다. 현재 오픈AI의 기업 가치가 약 290억 달러(약 35조 7000억 원)라고 한다. 뉴욕타임스 기사에 따르면, 오픈AI가 챗GPT 연구개발에 30억 달러(약 3조 7000억 원) 정도 돈을 쓴 거 같다. 인공지능을 만들고 운영하기 위해서 점점 더 많은 돈이 필요한 시대가 되는 것 같다. 구글은 ‘바드(Bard)’라는 이름의 대화형 챗봇을 출시하였지만, 커다란 실수를 저질렀다. 인간의 글을 설득력 있게 모방하는 매우 인기 있는 언어 앱인 챗GPT의 제작자에게 수십억 달러를 투자한 마이크로소프트와 인공지능 대결을 벌일 것이라고 밝혔다. 구글이 오픈AI와 마이크로소프트의 연합을 추격하기는 쉽지 않을 것 같다. 올해의 목표는 나의 개인 지식 데이터베이스와 챗GPT를 연결해서 비즈니스 혁신을 하는 것이다. 단기적으로는 챗GPT가 다른 개발자들에게 위협이 되지만, 장기적으로는 모든 인공지능 개발자가 챗GPT의 발전으로 사라지는 현상이 발생할 수도 있다.   그림 3. 챗GPT 가 모든 개발자의 위협이다.   챗GPT에게 이런 질문을 했다. “챗GPT 같은 초거대 AI의 출현은 작은 AI 개발업체에게는 기회일까, 위협일까?” 대답은 다음과 같다. “소규모 AI 개발자에게는 기회이자 위협이 될 수 있습니다. 한편으로는 챗GPT와 같은 AI 거대 기업의 등장으로 AI 기술의 가시성이 높아져 이 분야에서 더 많은 투자와 성장 기회로 이어져 소규모 AI 개발자에게 도움이 될 수 있습니다. 반면에 자원과 시장 점유율 측면에서 이러한 거대 기업의 우위는 소규모 AI 개발자가 경쟁하고 투자 기회를 찾기 어렵게 만들 수 있습니다. 궁극적으로 소규모 AI 개발자가 이러한 변화에 적응하고 고유한 강점과 기능을 활용하여 시장에서 성공하는 방식에 달려 있습니다.” 원론적인 이야기이지만, 나 역시 같은 생각을 하고 있다. 주위에 많은 작은 AI 업체들이 있고, 네이버도 세계 시장에서 보면 작은 업체일 수 있다. 자신들이 기회가 왔다고 하지만 사실 지금보다 더 힘들어질 가능성이 더 크다. 어느 시대에도 초기에는 수 많은 작은 업체에게 기회가 왔지만, 결국 빅 1과 2~3개의 글로벌 기업으로 시장이 정리된다. 챗GPT, GPT는 오픈AI가 만든 알고리즘과 고유 용어로 다른 회사들이 사용할 수 없다. 샴페인과 스파클링 와인처럼, 오직 오픈AI만 이 용어를 사용할 수 있다. 수 많은 사람의 머리에 각인이 되어버려서 첨단 비즈니스에서 선점이 얼마나 중요한가를 알 수 있다. 일 년 전 GPT-2부터 사용했지만, 본격적으로 괜찮아진 것은 작년 GPT-3부터이다. 현재 챗GPT는 GPT-3.5라고 알려져 있다. 남보다 조금 더 안다고, 조금 더 앞서간다고 유행에 편승하거나 자만하지 말고, 진짜 핵심 지식에 정진해야 한다. 가능한 챗GPT를 나의 삶이나 일에 많이 사용할 계획이다. 최근에 챗GPT를 이용해서 디지털 트윈 정의 언어(DWDL) 모델링을 하였다. 챗GPT에게 간단한 전기 선풍기 디지털 트윈을 DWDL로 만들어 달라고 하면 <그림 4>와 같이 코딩의 결과를 만들어준다.   그림 4. 전기 선풍기 디지털 트윈의 DWDL 예시   그런 다음 자신이 원하는 컴퓨터 언어로 코딩도 해 준다. 이제는 상상력의 세상이 되고 있다. 이 밖에 다양한 시도를 하고 있다. 우리의 일상에서는 배보다 배꼽이 크다. 라면을 먹고 스타벅스에서 라면보다 비싼 커피 한 잔 할 수 있다. 챗GPT 열풍은 자연 언어 처리(NLP)를 먹고, 자연 언어 처리는 인공지능을 먹고, 인공지능은 컴퓨터 공학 전체를 잠식하고 있다. 어쩌면 현재의 디지털 전환도 챗GPT 열풍에 잠식될 수 있다. 나의 가상회사(virtual company)에 새로운 디지털 직원(digital worker)들을 뽑았다. 이전의 에버노트 부장과 롬리서치 차장, 그리고 신입사원 챗CPT이다. 챗CPT라는 직원은 아직 인턴이라서 월급을 주지 않고 있지만, 일을 잘하면 월급으로 한 20 달러 정도 줄 예정이다. 이 신입사원은 내가 놀거나 자고 있을 때도 열심히 일하는 것 같다. 일은 잘 하는 것 같은데, 내가 일을 시킬 때 질문을 잘 해야 잘 알아 듣고 일을 잘 하는 것 같다. 앞으로 여러 디지털 직원을 지속적으로 고용할 예정이다. 4대보험과 고정비가 안 들어가서 좋다. 내가 직원들을 너무 착취하는 것은 아닐까? 나중에 디지털 회식을 해야겠다. 이번에는 챗GPT와 GPT-3 직원을 영입했다. 이 두 디지털 직원은 비슷한 친척이지만, 완전히 다른 직원이다. 그 밖에도 이번에 강력한 몇몇 디지털 직원을 영입했지만, 영업 비밀이다. 그러나, 나의 인생의 목적은 일이 아니라 예술이다. 올해 GPT로 사업을 하지만, GPT로 예술을 시작할 예정이다. 상반기는 GPT를 이용한 미술 작업이고 하반기는 GPT를 이용한 음악 작곡이다. 미술 작업은 어느 정도 감을 잡고 있지만, 음악 작곡 분야는 많이 공부해야 할 것 같다. 일단 나는 열풍을 싫어한다. 이런 열풍을 타고 싶어하지도 않고, 이런 열풍으로 돈을 벌고 싶지도 않다. 나는 단지 호기심이 많고 미래에 대비하는 것을 좋아한다. 챗GPT 열풍으로 많은 사람들이 똑똑해지고 있고, 검색 지식 정보가 아닌 생성 지식 정보가 넘칠 것으로 예상된다. 오늘도 인터넷 신문에 실린 전문가 컬럼을 역으로 챗GPT에게 질문을 했더니 전문가 컬럼 수준과 유사하거나 그 이상을 대답해 주고 있다. 당신이 작가라면 우선 챗GPT와 의논해 보는 것이 신상에 좋을 것이다. 챗GPT 시대 이후에는 생성 지식 정보가 많다는 것은 정보와 생각의 노이즈 또는 교란이 많아질 수 있다는 뜻이기도 하다. 우리의 비즈니스에서 가장 중요한 것은 결정이다. 결정에는 많은 지식과 정보, 첩보, 지혜, 경험, 사고가 필요하다. 이런 상황을 미리 대비해야 한다. 워렌 버핏 회장이 “물이 빠지면 누가 발가벗고 수영을 하고 있었는지 알 수 있다”고 말했다. 챗GPT로 조합된 타인의 지식의 물이 빠지면, 누가 진정한 독창적 지식을 가지고 있는지 알 수 있을 것이다.   조형식 항공 유체해석(CFD) 엔지니어로 출발하여 프로젝트 관리자 및 컨설턴트를 걸쳐서 디지털 지식 전문가로 활동하고 있다. 현재 디지털지식연구소 대표와 인더스트리 4.0, MES 강의, 캐드앤그래픽스 CNG 지식교육 방송 사회자 및 컬럼니스트로 활동하고 있다. 보잉, 삼성항공우주연구소, 한국항공(KAI), 지멘스에서 근무했다. 저서로는 ‘PLM 지식’, ‘서비스공학’, ‘스마트 엔지니어링’, ‘MES’, ‘인더스트리 4.0’ 등이 있다.     ◼︎ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-03-03
유니티, 드론 딜리버리 챌린지서 ML 에이전트의 알고리즘 성능 확인하다
유니티 코리아가 후원하고 RL 코리아(Reinforcement Learning Korea, 강화학습 코리아)가 주최한 ‘2021 RL 코리아 드론 딜리버리 챌린지’ 행사가 성료되어 어워즈 수상작들을 발표했다.  RL 코리아는 2017년 설립된 강화학습을 위한 국내 최대 규모의 오픈 커뮤니티로, 올해 처음으로 시작된 ‘2021 RL 코리아 드론 딜리버리 챌린지’는 드론이 물류창고의 물품들을 목적지로 빠르고 안전하게 배송하도록 학습시키는 것을 목표로 유니티로 구현된 시뮬레이션 환경에서 강화학습 알고리즘을 학습하는 챌린지다.  이 행사는 11월 1일부터 12월 7일까지 약 5주간 진행됐으며, 총 28개 팀이 861회 챌린지 모델을 제출하며 강화학습에 대한 뜨거운 관심을 확인할 수 있었다.    유니티로 구현된 시뮬레이션 환경에서 강화학습 모델을 제작하는 2021 RL 코리아 드론 딜리버리 챌린지   이번 챌린지에서 상위 10 위권 내 7팀, 전체 28개 제출작 중 17개가 유니티 머신러닝 에이전트(Unity Machine Learning Agents, 이하 ML 에이전트)에서 제공하는 알고리즘을 통해 학습을 진행했으며 나머지 팀들의 경우 ML에이전트에서 제공하는 파이선(Python) API를 통해 알고리즘을 구현했다.  2017년 처음 출시된 ML 에이전트는 복잡한 시뮬레이션 환경하에서 강화학습 관련 연구 프로젝트나 자가 학습을 통해 스스로 진화하는 콘텐츠가 포함된 게임 등을 제작하는 데 활용된다. 2021년 5월 새롭게 공개된 ML 에이전트 v2.0은 협동형 동작을 훈련시키는 기능, 에이전트가 환경 내 다양한 엔티티를 관찰하는 기능, 여러 작업을 훈련하도록 지원하는 작업 파라미터화 기능 등 새로운 개선 사항들을 통해 복잡한 협동형 환경을 보다 완벽하게 지원한다. 챌린지에 제출된 모델들은 배달 완료 수 및 소요 시간을 기반으로 심사하였으며, 총 4팀이 수상했다.  RL 코리아 민규식 연구원은 “유니티를 활용할 경우 비교적 간단하게 멋진 시뮬레이션 환경을 개발하는 것이 가능하다. 또한 유니티의 ML 에이전트를 사용하면 강화학습 전문가부터 초보자들까지 누구나 쉽게 챌린지에 참여할 수 있을 것으로 생각하여 유니티와 ML 에이전트를 기반으로 챌린지 환경을 개발하게 되었다.”며, “이번 챌린지를 통해 참가자 분들이 파이선 API의 사용부터 ML에이전트를 통한 학습까지 ML 에이전트의 다양한 기능들을 사용해볼 수 있는 기회가 되었을 것으로 생각한다”고 밝혔다. 유니티 코리아 김인숙 대표는 “올해 처음 진행된 행사를 통해 강화학습 분야에서 뛰어난 재능을 가진 팀들과 우수한 결과를 보여준 알고리즘들을 확인할 수 있어 기뻤다”며, “참가자들이 유니티 구현된 시뮬레이션 환경에서 ML 에이전트가 제공하는 뛰어난 안정성과 성능을 다시 한 번 확인할 수 있는 좋은 기회였으며, 앞으로도 크리에이터들이 쉽고 편리하게 개발할 수 있도록 노력할 것이다”라고 말했다.
작성일 : 2021-12-27
[케이스 스터디] 로봇의 디지털 트윈 제작 및 훈련 사례
유니티의 인공지능 제품 활용 프로젝트   유니티는 인공지능 제품으로 제작한 다양한 유니티 프로젝트를 진행하고 있다. 이 글에서는 OpenCV Spatial AI 대회의 최근 출품작을 소개한다. 이 대회에서는 인상적인 예제들을 통해 유니티의 로보틱스와 컴퓨터 비전, 강화학습, 그리고 증강현실 기능을 선보인다. ■ 자료 제공 : 유니티코리아     전통적으로 유니티는 게임 개발자들을 지원하는 엔진과 툴을 제작해 왔지만, AI@Unity 그룹에서는 머신러닝, 컴퓨터 비전, 로보틱스와 같은 분야를 중심으로 툴을 제작하여 게임 이외에, 특히 인공지능과 실시간 3D 환경에 의존하는 애플리케이션을 지원하고 있다. 제라드 에스포나(Gerard Espona)와 카우디(Kauda) 팀의 대회 출품작에는 여러 예제에 걸쳐 유니티의 다양한 AI 툴과 패키지가 사용되었다. 팀은 컴퓨터 비전 모델을 훈련하기 위해 유니티의 Perception 패키지를 사용했으며, ML-Agents 툴킷을 사용하여 머신러닝 모델을 훈련하고 로봇 팔을 시뮬레이션했다. 이 글에서는 에스포나와의 인터뷰를 통해 이번 프로젝트를 제작한 계기를 알아보았다.   카우다 팀이라는 이름은 어디에서 착안했는지 지오바니 레르다(Giovanni Lerda)가 만든 카우다(KAUDA)에서 팀 이름을 따왔다. 카우다는 3D 프린팅이 가능한 데스크톱 크기의 무료 오픈 소스 5축 로봇 팔로, 카우다를 사용하여 이번 프로젝트를 원격으로 공동 작업할 수 있었다.     유니티에서 어떻게 카우다의 디지털 트윈을 만들었는지 카우다의 디지털 트윈을 구동하는 유니티 애플리케이션인 Kauda Studio를 개발했다. 이는 역운동학(IK) 컨트롤과 실물 카우다에 대한 USB/블루투스 연결을 지원하여 정확한 카우다 시뮬레이션과 기능을 제공하며, 여러 대의 OpenCV OAK-D 카메라도 지원할 수 있다.   ▲ OAK-D 카메라의 유니티 모델   OAK-D 카메라가 무엇이며, 어떻게 유니티와 같이 사용했는지 인텔 MyriadX VPU 기반의 온보드 프로세싱을 갖춘 OAK-D 카메라는 스테레오 뎁스 카메라 두 대와 4K 컬러 카메라 한 대를 결합한 것으로, 다양한 기능을 자동으로 처리한다. 대회에 참여하는 과정에서 OAK 기기용 유니티 플러그인을 제작했으며, 유니티로 디지털 트윈도 만들고 싶었다. OAK-D 유니티 디지털 트윈은 가상 3D 카메라에 합성 데이터 수집에 사용될 수 있는 정확한 시뮬레이션을 제공했으며, 실제 기기의 파이프라인에도 가상 이미지를 제공했다. 가상 OAK-D 카메라로 커스텀 아이템을 훈련하기 위해 필요한 합성 데이터는 Unity Perception 패키지를 사용하여 수집할 수 있었다.     유니티로 디지털 트윈을 만드는 것이 왜 중요한가 디지털 트윈이 있어서 카우다에 추가 기능을 활성화할 수 있었다. 유니티의 증강현실(AR) 기능을 사용하면 현실에서 가상 로봇과 상호 작용하는 것도 가능하다. 이를 활용하면 로봇 없이도 로봇을 유지 보수하는 방법을 배울 수 있다. 아울러 로봇의 정확한 가상 표현이 있기에 코드를 작성하지 않고도 순차적인 작업을 프로그래밍할 수 있다. 디지털 트윈 덕분에 RL(강화학습) 훈련을 수행할 수 있었다. RL은 시간이 많이 걸리는 과정으로, 지극히 단순한 예제가 아닌 이상 언제나 시뮬레이션이 필요하다. 유니티로 제작한 카우다에 ML-Agents 툴킷을 사용하여 제어를 위한 RL 훈련을 수행했다. 또한 유니티에서 로봇을 복제하고 로봇 영역 안에 있는 사람의 위치를 카메라로 측정하여, 사람과 기계 사이의 협업과 안전 절차를 테스트했다. 오류가 발생하면 사람이 다칠 수도 있는 대형 로봇에 이 기능을 활용할 수 있다. 시뮬레이션 환경을 이용하면 이와 같은 시나리오를 안전하게 테스트할 수 있다.   ▲ ML-Agents를 통한 훈련 및 호스트와 OAK-D 간의 추론 비교   이번 프로젝트에서 ML-Agents 툴킷을 어떤 방식으로 활용했는지 RL은 강력한 로보틱스용 프레임워크이며, Unity ML-Agents는 디지털 트윈이 복잡한 작업을 배우고 수행할 수 있도록 하는 뛰어난 툴킷이라고 생각한다. 대회 기간이 짧았기 때문에, 목표는 간단한 RL ‘만지기’ 과제를 구현하고 결과 모델을 변환하여 OAK-D 기기에서 추론을 실행하는 것이었다. 로봇은 ML-Agents를 통해 탐지된 3D 오브젝트를 동적으로 만지도록 IK 컨트롤을 사용하여 최적의 경로를 학습했다. 이를 위해 우선 Spatial Tiny YOLO를 사용하여 3D 오브젝트 탐지기를 구현했다. RL 모델(PPO)은 탐지 결과와 IK 컨트롤 포인트의 위치를 입력 관찰 값으로 사용한다. 출력 동작은 IK 컨트롤 포인트의 3축 이동이 담당한다. 각 단계마다 작은 페널티를 주고 로봇이 오브젝트를 만질 때 큰 보상(1.0)을 주는 식으로 보상 시스템을 구성했다. 훈련 속도를 높이기 위해, 동시에 학습하는 다중 에이전트를 활용하여 실제 Spatial Tiny YOLO와 동일한 출력을 가진 가상의 Spatial Tiny YOLO를 개발했다. 모델의 훈련이 끝나면 OpenVino 툴킷을 통해 OpenVino IR 및 Myriad Blob 포맷으로 변환하여 OAK-D 기기에 모델을 로드하고 추론을 실행했다. 최종 파이프라인은 Spatial Tiny YOLO와 RL 모델이다. 유니티 플러그인 덕분에 유니티에서 ML-Agents와 OAK-D 에이전트를 사용하여 추론을 비교할 수 있었다.   ▲ Perception 패키지를 이용한 합성 데이터의 생성과 통합   합성 데이터가 이번 프로젝트에 어떤 도움이 되었는지 파이프라인의 첫 단계는 3D 오브젝트 탐지기로, AI 기반 컴퓨터 비전과 로봇을 이용한 작업은 대부분 여기에서 시작한다. 팀은 미리 훈련시킨 Tiny YOLO v3 모델을 사용했으며 Unity Perception 패키지를 통해 커스텀 카테고리를 훈련할 수 있었다. 이를 통해 자동으로 실측 바운딩 박스 레이블링이 완료된 3D 모델의 대규모 합성 데이터 세트를 몇 분만에 생성할 수 있었다. 일반적으로 데이터 수집과 레이블링 과정은 수작업으로 이루어지며 상당히 오랜 시간이 걸린다. 따라서 다양한 회전, 조명 조건, 텍스처 배리에이션 등의 여러 랜덤화 옵션을 사용하여 풍부한 데이터 세트를 생성할 수 있는 역량을 갖추게 된 것은 대단한 진척이라 할 수 있다.   프로젝트 진행에 어려움은 없었는지 가상 아이템과 실물 아이템을 동기화할 때 타이밍이 약간 어긋나는 경우가 있었다. 이 문제는 오픈소스 로봇 개발 플랫폼인 ROS를 사용하여 해결할 수 있을 거라 예상한다. 이제 유니티에서 공식적으로 ROS를 지원하니 더 반가운 일이다.   ▲ sim2real을 수행하는 최종 솔루션     기사 내용은 PDF로도 제공됩니다.
작성일 : 2021-12-01