• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "가트너"에 대한 통합 검색 내용이 641개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
가트너, “스마트폰의 생성형 AI가 일상화될 것”
가트너가 전 세계 생성형 AI 스마트폰에 대한 최종 사용자 지출이 2025년 말까지 총 2982억 달러에 이르면서, 전체 AI 최종 사용자 지출의 20%를 차지할 것이라는 전망을 발표했다. 생성형 AI 스마트폰이란 소규모 언어 모델(SLM)을 실행할 수 있는 내장형 뉴럴 엔진(neural engine) 또는 신경망처리장치(NPU)를 탑재한 기기로, 프리미엄 스마트폰 및 350달러 미만의 기본형 스마트폰을 포함한다. 한편, 유틸리티 스마트폰은 향후에도 NPU 탑재가 예상되지 않아 제외된다. 가트너는 모바일 공급업체가 온디바이스 생성형 AI 모델과 애플리케이션을 통합해, 2026년 생성형 AI 스마트폰 출하량은 올해 대비 51% 증가하고 최종 사용자 지출은 32% 증가해 3933억 달러에 이를 것으로 예측했다. 또한 2029년까지 프리미엄 스마트폰의 100%가 생성형 AI 기능을 탑재할 것으로 내다봤다. 가트너의 란짓 아트왈(Ranjit Atwal) 시니어 디렉터 애널리스트는 “현재 대부분의 사용자가 텍스트나 터치 기반으로 작업을 수행하고 있으며, 음성 상호작용은 제한적”이라면서, “점차 대화형 AI가 자연스럽게 스며들며 사용자는 AI를 단순한 반응형 도구가 아닌, 능동적인 디지털 동반자로 받아들이게 될 것”이라고 전했다. 한편, 가트너는 2027년까지 40 TOPS(초당 40조 회 연산) 이상의 연산 성능을 갖춘 온디바이스 NPU가 프리미엄 생성형 AI 스마트폰의 표준으로 자리 잡을 것으로 전망했다. 이를 통해 복잡한 멀티모달 AI 워크로드를 과도한 전력 소모 없이 실시간으로 실행할 수 있을 것으로 보인다. 아트왈 시니어 디렉터 애널리스트는 “새로운 NPU의 확산은 생성형 AI 실행 속도와 효율성을 향상시킬 것이다. 사용자 또한 최적의 경험을 위해 최신 스마트폰 하드웨어 업그레이드를 고려하게 될 것”이라며, “올해 안에 대부분의 프리미엄 생성형 AI 스마트폰에 NPU가 탑재되고, 기본형 모델의 41%도 NPU를 갖게 될 것”이라고 전망했다.
작성일 : 2025-09-11
가트너, ‘2025 신기술 하이프 사이클’ 통해 자율 비즈니스 시대 전망
가트너가 ‘2025 신기술 하이프 사이클(2025 Hype Cycle for Emerging Technologies)’을 통해 주목해야 할 주요 혁신 기술로 ▲기계 고객 ▲AI 에이전트 ▲의사결정 인텔리전스 ▲프로그래머블 머니를 선정했다. 가트너 하이프 사이클은 기술 및 애플리케이션의 성숙도와 도입 현황을 시각적으로 표현하고, 실제 비즈니스 문제 해결 및 새로운 기회 창출과의 잠재적 연관성을 제시한다. 이 방법론은 시간 흐름에 따른 기술 또는 애플리케이션 발전 과정을 조망하고, 특정 비즈니스 목표의 맥락에서의 효과적인 도입 관리를 위한 신뢰 있는 인사이트를 제공한다. 가트너는 매년 프로파일링하는 2000개 이상의 기술 및 응용 프레임워크에서 핵심적인 인사이트를 도출해, 반드시 알아야 할 신기술을 정리해 제시하고 있다. 이들 기술은 향후 2년에서 10년간 혁신적인 이점을 제공할 잠재력을 갖춘 것으로 평가된다.     기계 고객(Machine Customers)이란 사람이나 기업을 대신해 상품, 서비스를 구매하는 비인간 경제 주체다. 가트너는 고객 역할을 수행할 수 있는 B2B 기기를 약 30억 개로 추산하며, 2030년까지 80억 개로 늘어날 것이라 전망했다. 가상 개인 비서, 스마트 가전, 커넥티드 카, 사물인터넷(IoT) 기반 공장 등이 이에 포함된다. 가트너는 기계 고객이 제조, 소매, 소비재 등 다양한 산업에서 새로운 수익과 효율성을 창출하는 핵심 동력이 될 것이라면서, “기업은 경쟁에서 뒤처지지 않기 위해 비즈니스 모델을 재정립하고 기회를 선제적으로 활용해야 한다”고 짚었다. AI 에이전트(AI Agents)는 디지털, 물리적 환경에서 인지, 의사결정, 행동을 수행해 기업의 목표 달성을 지원하는 자율 또는 반자율 AI 소프트웨어다. 기업은 대형 언어 모델(LLM)을 비롯한 AI 기술을 활용해 복잡한 작업을 수행할 수 있는 AI 에이전트를 개발, 배포하고 있으며, 이는 고객 서비스, 산업 운영, 데이터 분석, 콘텐츠 제작, 물류 등 여러 분야를 자동화해 산업 전반에 혁신을 가져올 잠재력을 갖고 있다. 예측과 실행 정확성에 대한 우려로 AI 에이전트에 대한 신뢰는 제한적이다. 이 기술은 인간의 감독 없이 중요한 결정을 신속히 내리며 독립성, 사용 편의성이 향상되고 있다. 가트너는 기업이 AI 에이전트를 효과적으로 활용하려면 기능과 적용 범위를 명확하게 이해하고, 전략적 계획에 반영할 것을 권장했다. 의사결정 인텔리전스(Decision Intelligence)는 의사결정을 고도화하는 실용적인 접근 방식으로, 의사결정 방식과 결과를 평가·관리·개선하는 과정을 이해하고 엔지니어링한다. 의사결정을 디지털 자산으로 전환하고 모델링하면, 통찰과 실행 사이의 간극을 줄이고 의사결정의 품질, 실행력, 결과를 개선할 수 있다. 가트너의 크리스티안 스테판(Christian Stephan) 시니어 디렉터 애널리스트는 “에이전틱 AI와 생성형 AI에 대한 과대광고, 의사결정 자동화 관련 규제 압박, 심화된 글로벌 불확실성은 기존 비즈니스 프로세스와 의사결정의 한계를 드러냈다. 이에 따라 기업은 속도와 품질을 넘어 일관성, 규정 준수, 비용 효율성, 적응력을 갖춘 새로운 의사결정 체계를 요구하고 있다”고 전했다. 프로그래머블 머니(Programmable Money)는 소프트웨어를 통해 프로그래밍할 수 있는 디지털 화폐를 의미한다. 알고리즘에 따라 작동 방식을 설정할 수 있어 블록체인 기반 토큰화와 스마트 계약을 활용하면 경제 주체의 참여를 확대하고 가치 교환을 자동화할 수 있다. 기업은 비즈니스 파트너, 직원, 기계 고객과 상호작용하기 위해 프로그래머블 머니를 전략적으로 활용해야 한다. 스테판 시니어 디렉터 애널리스트는 “프로그래머블 머니는 새로운 유형의 통화와 디지털 자산 시장을 열어 금융 서비스 분야에 변화를 가져올 것”이라며, “가치 창출, 자금 조달, M2M(Machine-To-Machine) 등 자산 교환의 혁신을 주도해 공급망과 금융 가치 사슬을 재편할 것”이라고 전망했다. 가트너의 마티 레스닉(Marty Resnick) VP 애널리스트는 “수년간의 디지털 혁신 이후, 기업은 AI와 자동화가 불러온 경쟁, 고객, 제품, 운영, 리더십 재편을 목도하고 있다”면서, “기업은 자율 비즈니스 시대라는 새로운 혁신 국면에 직면했으며, CIO는 신기술이 경쟁력 확보, 효율성 향상, 성장 기회 창출에 어떻게 기여할 수 있는지 평가해야 한다”고 말했다.
작성일 : 2025-09-10
데이터 분석 로코드 설루션을 배워보자 Ⅰ
로코드를 활용하여 엔지니어링 데이터 분석 극대화하기 (2)   지난 호에서는 로코드 분석 설루션이 필요한 이유에 대해 알아보았다. 또한 데이터 분석이 일반적으로 거치는 과정에 대해서도 살펴 보았는데, 이러한 과정에 파이썬(Python)과 같은 프로그래밍 언어가 활용되는 상황 또한 정리해 보았다. 이번 호에서는 로코드 분석 설루션인 KNIME(나임)에 대해 알아보고, 전력 판매량 예측에 대한 분석 과제를 따라하기 과정을 통해 완성해 보도록 하겠다.   ■ 연재순서 제1회 데이터 분석에 로코드 설루션이 필요한 이유 제2회 데이터 분석 로코드 설루션을 배워보자 Ⅰ 제3회 데이터 분석 로코드 설루션을 배워보자 Ⅱ 제4회 로코드를 활용하여 시뮬레이션 데이터 분석을 따라해 보자 제5회 데이터 분석 로코드 설루션을 클라우드로 확장해 보자   ■ 윤경렬 현대자동차 연구개발본부 책임연구원   ■ 김도희 잘레시아 DX 프로   지난 호에서 살펴본 일반적인 데이터 분석 과정은 다음과 같다.   요청 접수 → 데이터 확보 → 데이터 검토(칼럼/누락/이상치 확인) → 분석 전략 수립 → 데이터 정제 및 가공 → 분석 수행 및 시각화 → 결과 공유   이전에 강조한 바와 같이, 아무리 쉬운 코딩 언어라고 할지라도 데이터 분석을 요청받은 데이터 과학자(data scientist)가 이를 실제 업무에 적용하여 원하는 결과를 빠르고 정확하게 구현해내는 것은 어려운 일이다. 또한 코딩에 능숙한 데이터 과학자라고 해도 깃허브(Github) 및 인터넷 상에 공유된 소스코드를 다운받아 재활용 및 가공하여 사용하는 경우가 많은데, 이때 악성 코드 등에 대한 보안 이슈도 문제가 될 소지가 있다. 사실 데이터 과학자는 수학 및 통계적 지식을 활용하여 빠르게 정확하게 데이터 분석을 하고 싶은 것이고, 이를 위해 효율적인 툴을 사용하고자 한다. 우리는 이러한 현상을 극복해 나가고자 로코드 분석 설루션(low code analytics solution)을 대안으로 검토하였고, 이를 활용하여 데이터 분석을 수행해 나가는 과정을 따라가 보고자 한다. 지난 호에서 유관부서로부터 전력 판매량(electric power sales) 예측에 대한 분석 과제를 요청 받은 상태이고, 언제나처럼 기한은 촉박한 상황의 시민 데이터 과학자(citizen data scientist)로 가정하여 주어진 과제 목표를 달성하였다. 우리에게 주어진 데이터는 발전소 데이터, 기상 정보 데이터, 날짜 및 요일 데이터 등 세 가지로 이를 처리하기 위해 파이썬으로 코드를 작성한 사례를 공유하였고, 동일한 내용을 로코드 분석 설루션인 KNIME을 활용하여 처리한 사례도 공유하였다.   그림 1   이번 호에서는 KNIME에 대해 알아보고 전력 판매량 예측에 대한 분석과제를 따라하기 과정을 통해 완성해 보도록 하겠다. 우선 구글 제미나이(Google Gemini)에게 KNIME에 대한 역사와 특징에 대해 알려 달라고 해보자.(그림 2~4)   그림 2   그림 3   그림 4   가트너(Gatner)의 피어 인사이트(Peer insight) 리뷰를 확인해 보았는데, 평점(rating)이 상당히 높은 편이고 사용자의 반응도 높다는 것을 확인하였다. 또한 오픈소스 기반 소프트웨어로서 기업에서도 무료로 자유롭게 설치하여 사용할 수 있다는 측면에서(KNIME Analytics Platform) 로코드 분석 설루션으로 선택하기에 부족함이 없다는 것을 확인하였다.   그림 5   현재 KNIME은 데이터 사이언스를 위한 최적의 설루션을 위해 세 가지 서비스를 제공하고 있다. 이번 호에서는 KNIME Analytics Platform을 활용하여 전력 판매량 예측에 대한 분석 과제를 따라해보고자 한다.   그림 6     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2025-09-03
가트너, “올해 전 세계 AI PC 출하량 104% 증가할 것”
가트너는 2025년 전 세계 AI PC 출하량이 전년 대비 약 104% 증가해 전체 PC 시장의 31%를 차지할 것이라는 전망을 발표했다. 가트너는 2026년에는 AI PC 출하량이 1억 4300만 대에 이르고, 전체 PC 시장의 55%를 차지할 것으로 예측했다. 또한, 2029년까지 AI PC가 시장의 표준으로 자리 잡을 것으로 전망했다. 노트북 시장에서는 AI 노트북 점유율이 2024년 19.4%에서 2025년 35.7%, 2026년에는 58.7%로 늘어날 전망이다. 데스크톱 PC 시장에서는 AI 데스크톱 점유율이 2024년 3.8%에서 2025년 16.4%, 2026년 42.1%가 될 것으로 보인다. 기업 및 소비자 시장에서는 프로세서 플랫폼에 따른 AI PC에 대한 선호도 차이가 존재했다. 가트너에 따르면, 애플리케이션 호환성 문제가 점차 해소되면서 ARM 기반 노트북은 기업보다 소비자 시장에서 더 큰 점유율을 확보할 것으로 예상된다. 반면, 기업 시장에서는 윈도우 x86 기반 노트북에 대한 선호가 뚜렷해, 2025년 기업용 AI 노트북 시장에서 윈도우 x86 기반 노트북은 71%, ARM 기반 노트북은 24%의 점유율을 차지할 것으로 예측된다. 가트너는 AI PC 보급이 확대됨에 따라 2026년 말까지 소프트웨어 공급업체의 40%가 PC에 AI를 내장하기 위한 투자를 우선적으로 진행할 것으로 전망했다. 이는 2024년의 2%에서 크게 증가한 수치다. 또한, 소형 언어 모델(SLM)이 PC에서 로컬로 실행되는 사례가 2023년에는 존재하지 않았지만 2026년에는 여럿 증가할 것으로 예상했다. SLM은 PC를 비롯한 기기 전반에서 고급 AI 기능을 직접 실행해 응답 속도를 높이고, 에너지 소비를 줄이며, 클라우드 의존도를 낮춘다. 이는 특정 작업에 특화된 인텔리전스를 제공할 뿐만 아니라, AI가 기기에서 직접 실행되기 때문에 사용자와 기업 데이터를 안전하게 보호할 수 있다. 가트너는 PC 공급업체가 하드웨어를 넘어, 특정 역할과 사용 사례에 최적화된 소프트웨어 정의형, 사용자 중심 기기를 제공하는 것이 AI PC의 미래이자 새로운 성장 동력이라고 조언했다. 가트너의 란짓 아트왈(Ranjit Atwal) 시니어 디렉터 애널리스트는 “AI PC가 시장 재편을 주도하고 있지만, 관세의 영향과 시장 불확실성으로 인해 PC 구매가 보류되면서 올해 도입 속도는 다소 둔화될 전망”이라며, “하지만 그럼에도 사용자는 에지 환경에서의 AI 활용 확대에 대비해 AI PC 투자를 이어갈 것”이라고 전했다. 또한 “AI PC의 미래는 맞춤화에 있다. 사용자가 원하는 앱, 특징, 기능을 선택해 기기를 구성하는 것이 중요하다”고 덧붙였다.
작성일 : 2025-08-29
가트너, ‘2025 AI 하이프 사이클’에서 AI 에이전트와 AI 레디 데이터에 주목
가트너(Gartner)가 ‘2025 AI 하이프 사이클(2025 Gartner Hype Cycle for Artificial Intelligence)’ 보고서를 통해 주목해야 할 주요 AI 혁신 기술을 발표했다. 가트너는 2025년 가장 빠르게 발전하는 기술로 ‘AI 에이전트(AI Agents)’와 ‘AI 레디(AI-Ready) 데이터’를 꼽았다. 이들 기술은 올해 높은 관심을 받고 있으며, 낙관적인 전망 및 투기적인 약속이 이어지면서 부풀려진 기대의 정점에 도달한 것으로 나타났다. 가트너 하이프 사이클은 기술 및 애플리케이션의 성숙도와 도입 현황을 시각적으로 표현하고, 실제 비즈니스 문제 해결 및 새로운 기회 창출과의 잠재적 연관성을 제시한다. 이 방법론은 시간 흐름에 따른 기술 또는 애플리케이션 발전 과정을 조망하고, 특정 비즈니스 목표의 맥락에서의 효과적인 도입 관리를 위한 신뢰 있는 인사이트를 제공한다.     AI 에이전트는 AI 기술을 활용해 디지털, 물리 환경에서 인지하고, 의사결정을 내리며, 행동을 수행하고 목표를 달성하는 자율 또는 반자율 소프트웨어다. 기업은 대형 언어 모델(LLM)을 비롯한 다양한 AI 기술과 사용 사례를 활용해 복잡한 작업을 수행할 수 있는 AI 에이전트를 개발 및 배포하고 있다. AI 레디 데이터는 데이터 세트가 AI 애플리케이션에 최적화되도록 보장해 정확성과 효율성을 향상시킨다. 데이터의 준비 상태는 특정 AI 사용 사례에 대해 얼마나 적합한 데이터인지로 결정되며, 이는 해당 사용 사례와 AI 기술 맥락에서 결정될 수 있다. 이는 데이터 관리에 대한 새로운 접근 방식을 요구한다. 가트너는 AI에 대규모로 투자하는 기업이 데이터 관리 관행과 역량을 AI 환경에 맞게 발전시켜야 한다고 조언했다. 이를 통해 기존 및 향후 비즈니스 요구사항 충족, 신뢰 확보, 위험 및 준수 문제 방지, 지적 재산 보호, 편향과 환각 감소를 달성할 수 있다고 전했다. 또한, 가트너는 ‘멀티모달(Multimodal) AI’와 ‘AI 신뢰, 위험, 보안 관리(TRiSM)’가 향후 5년 내 AI 혁신 기술의 주류가 될 것이며 부풀려진 기대의 정점을 주도하고 있다고 분석했다. 이러한 기술 발전은 보다 강력하고 혁신적이며 책임감 있는 AI 애플리케이션을 구현해 기업의 운영 방식을 변화시킬 것으로 전망된다. 멀티모달 AI는 이미지, 비디오, 오디오, 텍스트 등 여러 유형의 데이터를 동시에 학습하는 모델이다. 다양한 데이터 소스를 통합하고 분석함으로써 단일 유형의 데이터만 사용하는 모델보다 복잡한 상황을 더 효과적으로 이해할 수 있다. 이를 통해 사용자에게 더 명확한 정보를 제공하고 AI 애플리케이션의 새로운 가능성을 열 수 있다. 가트너는 멀티모달 AI가 향후 5년 동안 모든 산업 분야의 애플리케이션과 소프트웨어 제품의 성능 향상에 점점 더 필수 요소로 자리 잡을 것으로 전망했다. AI TRiSM은 윤리적이고 안전한 AI 도입을 위한 핵심 기술 프레임워크이다. 이는 모든 AI 사용 사례에 대한 기업 정책을 지원하고, AI 거버넌스, 신뢰성, 공정성, 안전성, 보안, 개인정보 보호, 데이터 보호를 보장하는 기술 계층으로 구성되어 있다. 가트너의 하리타 칸다바투(Haritha Khandabattu) 시니어 디렉터 애널리스트는 “올해도 AI에 대한 투자가 활발하게 이어지는 가운데 운영 확장성, 실시간 인텔리전스를 위한 AI 활용이 주목받고 있다”며, “생성형 AI 중심에서 AI 에이전트, AI 레디 데이터와 같은 지속 가능한 AI 제공을 지원하는 기반 기술로 이동하는 추세”라고 전했다. 이어서 칸다바투 시니어 디렉터 애널리스트는 “AI는 막대한 비즈니스 잠재력을 가지고 있지만 이는 저절로 실현되지 않는다. 목표 달성을 위한 핵심은 비즈니스와 연계된 파일럿 프로젝트, 인프라 벤치마킹, 가치 창출을 위한 AI와 비즈니스 팀 간 협력”이라고 강조했다.
작성일 : 2025-08-06
[포커스] AWS, “다양한 기술로 국내 기업의 생성형 AI 활용 고도화 돕는다”
아마존웹서비스(AWS)는 최근 진행한 설문조사를 통해 국내 기업들의 AI 활용 현황과 과제를 짚었다. 또한, 신뢰할 수 있는 고성능의 인공지능 에이전트(AI agent)를 구축하고 배포할 수 있는 환경을 제공하면서 한국 시장에 지원을 강화하고 있다고 밝혔다. AWS는 AI의 도입과 활용 과정에서 기업이 겪는 기술적 어려움을 줄이고, 더 많은 기업이 쉽고 안전하게 생성형 AI를 도입하여 비즈니스 가치를 창출할 수 있도록 돕는 데 집중하고 있다. ■ 정수진 편집장    기업의 AI 도입률 높지만…고도화 위한 과제는?  AWS와 스트랜드 파트너스(Strand Partners)는 2025년 4월 한국 기업 1000곳과 일반인 1000명을 대상으로 AI에 대한 행동과 인식에 대한 설문조사를 진행하고, 그 결과를 바탕으로 한국 기업의 AI 활용 현황을 평가했다. 이 조사는 유럽에서는 3년째 진행되어 왔는데, 이번에 글로벌로 확장해 동일한 방법론을 적용했다. 스트랜드 파트너스의 닉 본스토우(Nick Bonstow) 디렉터는 설문조사 보고서의 내용을 소개하면서, 한국 기업의 AI 도입 현황과 주요 과제를 분석했다. 조사에서는 한국 기업의 48%가 AI를 도입 및 활용하고 있는 것으로 나타났는데, 이는 전년 대비 40% 성장한 수치이다. 유럽 기업의 평균 AI 도입률인 42%보다 높았는데, 특히 지난해에만 약 49만 9000 개의 한국 기업이 AI를 처음 도입한 것으로 추정된다. 본스토우 디렉터는 “AI를 도입한 기업들은 실질적인 이점을 경험하고 있다. 56%가 생산성 및 효율성 향상으로 매출 증가를 경험했고, 79%는 업무 생산성 향상 효과를 확인했다. 그리고 AI 도입에 따라 주당 평균 13시간의 업무 시간을 절감했다”고 소개했다. AI 도입률은 높지만, 국내 기업의 70%는 여전히 챗봇이나 간단한 반복 업무 자동화와 같은 기초적인 수준의 AI 활용에 머무르고 있는 상황이다. AI를 다양한 업무 영역에 통합하는 중간 단계는 7%, 여러 AI 도구나 모델을 결합하여 복잡한 업무를 수행하거나 비즈니스 모델을 혁신하는 변혁적 단계는 11%에 불과했다. 본스토우 디렉터는 “기업들이 AI의 잠재력을 완전히 활용하기 위해 더 높은 단계로 나아가야 할 필요가 있다”고 짚었다. 본스토우 디렉터는 국내 기업의 AI 도입이 양극화되고, AI 혁신의 편차를 키울 수 있다고 전했다. 한국 스타트업의 70%가 AI를 확대하고 있는데 이는 유럽의 58%보다 높은 수치로, 국내 스타트업 생태계는 AI 도입에서 뚜렷한 강점을 보였다. 스타트업의 33%는 AI를 비즈니스 전략 및 운영의 핵심 요소로 두고 있으며, 32%는 가장 고도화된 방식으로 AI를 활용하고 있다. 또한, 21%는 AI 기반의 새로운 제품 및 서비스를 개발 중이다. 반면, 국내 대기업의 69%는 여전히 AI를 효율 개선, 업무 간소화 등 기초적인 수준에서만 활용하고 있는 것으로 나타났다. 대기업의 10%만이 AI 기반 신제품 또는 서비스 개발 단계에 진입했는데, 이는 스타트업의 절반 수준이다. 이번 조사에서는 AI 도입의 주요 장애 요인으로 기술 및 디지털 인재의 부족, 자금 접근성, 규제 환경 등이 꼽혔다. 조사 응답 기업의 43%가 디지털 인재를 확보하지 못해 AI 도입 또는 확산에 어려움을 겪고 있다고 응답했고, 지난 1년간 디지털 역량 교육에 참여한 직원은 약 34%였다. 67%의 기업은 정부의 지원 정책이 AI 도입 결정에 중요하다고 응답했으며, 45%의 스타트업은 벤처 자본 56 · 접근성이 성장을 위한 핵심 요소라고 평가했다. 그리고 국내 기업들은 기술 예산 가운데 평균 23%를 규제 준수 비용에 투입하고 있으며, 34%는 AI 기본법 등 관련 입법으로 인해 이 비용이 증가할 것으로 예상했다. 본스토우 디렉터는 “한국이 AI 부문에서 세계를 선도할 수 있는 인프라와 스타트업 생태계 그리고 강한 열정을 가지고 있음을 확인했다. 하지만 AI 활용의 깊이를 더해주는 변혁적인 활용으로 나아가지 못하고 있는 점과 인재 부족, 규제 불확실성 등의 장애 요인을 해결해야 AI를 미래의 성장 동력과 경쟁력의 원천으로 삼을 수 있을 것”이라고 평가했다. 그리고, 이를 위해 한국 정부가 ▲기술 인재에 대한 투자 ▲혁신 친화적이고 명확한 규제 환경 조성 ▲공공 부문의 기술 현대화 및 디지털 전환 추진 등에 관심을 기울일 것을 제안했다.   ▲ AWS 김선수 AI/ML 사업 개발 수석 스페셜리스트   기업의 생성형 AI 활용 문턱 낮춘다 AWS의 김선수 AI/ML 사업 개발 수석 스페셜리스트는 국내 기업들이 AI를 잘 활용할 수 있도록 돕는 AWS의 생성형 AI 기술 스택과 주요 서비스를 소개했다. 그는 “2023년이 생성형 AI 개념 검증(PoC)의 해였다면 2024년은 생산 적용, 2025년은 비즈니스 가치 실현의 해가 될 것”이라고 짚었다. 또한 복잡한 작업을 자율적으로 수행하는 에이전트 AI에 대한 관심이 커지고 있다면서, 가트너(Gartner)의 전망을 인용해 “2026년까지 기업의 80% 이상이 생성형 AI API(애플리케이션 프로그래밍 인터페이스)를 사용하거나 관련 기능이 탑재된 애플리케이션을 배포할 것”이라고 전망했다. AWS는 생성형 AI를 위한 기술 스택을 세 가지 계층으로 제공한다. 가장 아래쪽에는 GPU, AI 프로세서 등을 포함해 모델 훈련과 추론에 필요한 인프라 레이어가 있고, 중간에는 AI 모델에 연결하여 각 기업에 최적화된 생성형 AI 애플리케이션을 구현하도록 돕는 모델/도구 레이어, 가장 위쪽에는 복잡한 개발 없이 쉽고 빠르게 활용할 수 있는 생성형 AI 애플리케이션 레이어가 있다. 이 기술 스택의 핵심으로 AWS가 내세운 것이 아마존 베드록(Amazon Bedrock)이다. 베드록은 생성형 AI 애플리케이션을 쉽게 구축하고 확장할 수 있도록 지원하는 완전 관리형 서비스이다. 앤트로픽, 메타, 미스트랄 AI 등 12개가 넘는 AI 기업의 파운데이션 모델(FM)을 선택해 활용할 수 있다는 점이 특징이다. 아마존 베드록은 비용, 지연 시간, 정확도를 최적화할 뿐만 아니라 기업의 필요에 맞게 모델을 맞춤 설정하거나 유해 콘텐츠/프롬프트 공격 등을 필터링해 안전한 AI 활용 환경을 갖출 수 있도록 돕는다. 김선수 수석 스페셜리스트는 “베드록은 프롬프트 엔지니어링, 검색 증강 생성(RAG), 미세조정(파인 튜닝) 등 다양한 방식으로 모델을 활용할 수 있도록 지원한다. 특히 RAG 구현을 위한 지식 베이스 및 벡터 검색 기능을 기본으로 제공해, 기업의 내부 데이터를 안전하게 연결하고 관련성 높은 답변을 생성할 수 있다”고 전했다. 최근 생성형 AI는 어시스턴트(assistant)를 넘어 워크플로를 자동화하는 에이전트(agent)로 진화하고 있으며, 궁극적으로는 사람의 개입 없이 AI끼리 자율적으로 협업하는 에이전틱 AI(agentic AI) 시스템으로 나아갈 것으로 보인다. AWS는 생성형 AI 에이전트 구축을 위해 ▲아마존 Q 디벨로퍼(Amazon Q Developer)와 같이 사전 구축된 에이전트 제품 ▲아마존 베드록 에이전트(Amazon Bedrock Agents)와 같이 내장된 오케스트레이션을 제공하는 완전 관리형 설루션 ▲스트랜드 에이전트(Strands Agents)와 같은 경량 오픈소스 SDK(소프트웨어 개발 키트)를 활용해 직접 에이전트를 구축할 수 있는 제품 등을 선보이고 있다.    ▲ AWS는 AI 에이전트의 구축과 배포를 위해 다양한 기술을 제공한다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
[에디토리얼] AI 에이전트와 함께 하는 제조업 혁신의 골든타임
AI 에이전트, 제조업 현장의 새로운 동반자 2025년은 AI 에이전트가 기업 현장에 본격 도입되는 원년이 될 전망이다. 가트너(Gartner)는 AI 에이전트가 사람의 직접적인 안내 없이 복잡한 기업 업무를 수행할 수 있는 기술로 부상하며, 2025년 글로벌 기업의 AI 도입률이 지난 해의 55%에서 75%로 급격히 증가할 것으로 예측했다. 이에 따라 AI 에이전트는 실험적 도입 단계를 넘어 실제 비즈니스 현장에서 가치를 창출하는 핵심 도구로 자리매김하고 있다. 특히 제조업 분야에서 AI 에이전트의 활용 가능성은 매우 크다. 인구 고령화와 생산 가능 인구 감소, 숙련공 부족이라는 구조적 문제에 직면한 한국 제조업에 AI 에이전트는 단순 자동화를 넘어 지능형 의사결정 파트너로서 새로운 역할을 제공할 수 있다. 인더스트리 5.0 패러다임에서 강조하는 인간과 기술의 협업 관점에서 볼 때, AI 에이전트는 이어질 미래 제조업 혁신의 핵심 동력이 되고 있다.   스마트제조 2.0과 AI 에이전트의 융합 한편, 한국 정부가 추진 중인 '스마트제조 2.0' 정책과 AI 에이전트 기술의 융합은 제조 현장에 혁신적 변화를 예고한다. 기존의 스마트 공장이 사물인터넷(IoT)과 빅데이터 중심의 자동화에 초점을 맞췄다면, 앞으로는 AI 에이전트가 적용된 차세대 스마트 공장을 통해 자율 판단과 최적화가 가능한 지능형 생산 시스템으로 진화할 것이 기대된다. AI 에이전트가 본격적으로 도입되면 생산 계획 수립, 품질 관리, 예지 정비, 공급망 최적화 등 제조업의 핵심 영역에서 24시간 실시간 모니터링과 의사결정이 가능해진다. 예를 들어, 생산 라인의 실시간 데이터를 분석하여 품질 이상 징후를 조기에 감지하고, 자동으로 생산 파라미터를 조정하거나 설비 정비 일정을 최적화할 수도 있다. 또한, AI가 수요 예측과 재고 관리를 연동하면 적정 재고 수준을 유지하면서도 고객 맞춤형 생산을 더욱 효율적으로 수행할 수 있다.   사람과 AI의 협업이 만드는 제조 혁신 생태계 그러나 한국 제조업이 당면한 큰 과제는 숙련공 부족과 생산 인구 감소다. AI 에이전트는 이러한 구조적 문제에 대한 현실적인 해결책이 될 수 있다. 반복되고 위험 부담이 큰 작업은 AI 에이전트가 담당하고, 근로자는 창의적 사고와 복합적인 판단이 요구되는 고부가가치 업무에 집중하는 환경을 만들 수 있다. 중요한 것은 단순히 인력을 대체하는 것이 아니라, 인간과 AI의 협업 모델을 구축하는 것이다. AI 에이전트가 데이터 분석과 최적화 방안을 제시하면, 현장 전문가들은 이를 바탕으로 전략적 의사결정과 예외 상황 대응 등 고차원의 역할을 맡게 된다. 이는 기존 인력의 역량 강화와 동시에 새로운 일자리 창출로도 이어질 수 있다. 아울러 정부의 AI 인재 양성 정책과 연계하여, 제조업 종사자 대상의 AI 리터러시 교육과 디지털 역량 강화 프로그램의 확대도 중요하다. 이는 현장에서 AI 에이전트와 협업할 수 있는 숙련 인력 확보로 이어지며, AI 에이전트의 개발·운영·유지보수 등 새로운 고급 일자리 창출에도 기여할 전망이다.   ■ 박경수 캐드앤그래픽스 기획사업부 이사로, 캐드앤그래픽스가 주최 또는 주관하는 행사의 진행자 겸 사회자를 맡고 있다. ‘플랜트 조선 컨퍼런스’, ‘PLM/DX 베스트 프랙티스 컨퍼런스’, ‘CAE 컨퍼런스’, ‘코리아 그래픽스’, ‘SIMTOS 컨퍼런스’ 등 다수의 콘퍼런스 기획에 참여했고,행사의 전반적인 진행을 담당해 왔다. CNG TV 웨비나의 진행자 겸 사회자로, IT 분야의 취재기자로도 활동 중이다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2025-08-04
가트너, “기업용 소프트웨어의 80%가 5년 내 멀티모달로 바뀔 것”
가트너가 2030년까지 기업용 소프트웨어 및 애플리케이션의 80%가 멀티모달(multimodal) 방식으로 전환될 것이라는 전망을 발표했다. 이는 2024년 10% 미만이었던 수치에서 크게 증가한 것이다. 가트너의 로버타 코자(Roberta Cozza) 시니어 디렉터 애널리스트는 “멀티모달 생성형 AI는 기존 모델로는 구현할 수 없었던 기능 및 성능을 제공해 의료, 금융, 제조 등 다양한 산업 분야의 기업용 애플리케이션을 혁신할 것”이라면서, “도메인 특화 언어 모델의 정밀도 향상, 운영 자동화, 맥락 기반 의사결정 인텔리전스 강화로 AI가 업무 전반에서 선제적으로 행동할 수 있도록 할 것이다. 기업용 소프트웨어의 멀티모달 전환은 비즈니스 운영 및 혁신에서의 근본적인 변화”라고 설명했다. 멀티모달 생성형 AI는 이미지, 동영상, 오디오, 텍스트, 수치 데이터 등 여러 유형의 데이터 입출력을 단일 생성 모델 내에서 처리한다. 이처럼 멀티모달리티는 모델이 다양한 유형의 데이터와 상호작용하고 결과물을 생성하도록 지원해 생성형 AI의 활용성을 강화한다. 가트너는 현재 많은 멀티모달 모델이 텍스트 투 비디오(T2V), 스피치 투 이미지(S2I) 등 몇몇 모달리티에 제한되어 있지만, 향후 몇 년간 더 다양하고 새로운 모달리티가 추가될 것으로 보고 있다.     멀티모달 생성형 AI 모델과 같이 파괴력이 높은 기술은 가트너의 생성형 AI 신기술 임팩트 레이더(Emerging Tech Impact Radar for GenAI)의 핵심부에 자리한다. 제품 리더는 고객이 한 단계 높은 비즈니스 가치를 달성할 수 있도록, 이러한 신흥 AI 기술 투자에서 전략적인 결정을 내려야 한다. 코자 시니어 디렉터 애널리스트는 “기업은 사용자 경험과 운영 효율성 향상을 위해 소프트웨어에 멀티모달 기능을 통합하는 데 집중해야 한다. 각 사업부는 멀티모달 생성형 AI가 제공하는 다양한 데이터 입출력을 활용해 새로운 차원의 생산성과 혁신을 실현할 수 있을 것”이라고 강조했다.
작성일 : 2025-07-03
가트너, “에이전틱 AI의 도입 성공 위해서는 기반 워크플로를 재설계해야”
가트너가 에이전틱 AI(agentic AI) 프로젝트의 40% 이상이 2027년 말까지 비용 증가, 불분명한 비즈니스 가치, 부적절한 위험 관리를 이유로 중단될 것이라는 전망을 발표했다. 가트너가 2025년 1월 웨비나 참석자를 대상으로 실시한 설문조사에 따르면, 응답자의 19%는 에이전틱 AI에 상당한 투자를 했고, 42%는 보수적으로 접근하고 있는 것으로 나타났다. 반면, 8%는 투자를 전혀 하지 않았으며, 31%는 상황을 관망하거나 확신하지 못하는 것으로 나타났다. 가트너는 많은 공급업체가 ‘에이전트 워싱(Agent Washing)’을 통한 과대광고를 진행하고 있다고 지적했다. 에이전트 워싱은 AI 어시스턴트, 로봇 프로세스 자동화(RPA), 챗봇 등 실질적인 에이전트 기능을 갖추고 있지 않은 기술을 에이전틱 AI인 것처럼 과장하는 행위를 의미한다. 가트너는 수천 개의 에이전틱 AI 공급업체 중 실제로 해당 기술을 제공하는 업체는 약 130개에 불과할 것으로 분석했다. 이러한 초기 과제에도 불구하고, 가트너는 에이전틱 AI로 전환되는 추세는 AI 역량과 시장 기회 측면에서 비약적인 발전을 불러올 수 있다고 보고 있다. 가트너는 “에이전틱 AI는 스크립트 기반 자동화 봇과 가상 비서를 넘어 리소스 효율성 향상, 복잡한 작업 자동화, 새로운 비즈니스 혁신을 이끄는 새로운 수단을 제공할 것”이라고 전망했다. 가트너는 에이전틱 AI를 통해 자율적으로 수행되는 일상 업무 결정이 2024년 0%에서 2028년에는 최소 15%까지 증가할 것으로 전망했다. 또한 2028년까지 기업용 소프트웨어 애플리케이션의 33%가 에이전틱 AI 기능을 포함할 것으로 예상되며, 이는 2024년 1% 미만에서 크게 증가한 수치다. 가트너는 현재와 같은 초기 단계에서는 명확한 가치와 ROI가 입증된 경우에만 에이전틱 AI를 도입할 것을 권장했다. 기존 시스템에 AI 에이전트를 통합하는 것은 기술적으로 복잡하거나, 워크플로 중단이나 고비용의 수정 작업이 발생할 수 있기 때문이다. 가트너는 에이전틱 AI 기반으로 워크플로를 처음부터 재설계하는 것이 성공적인 구현을 위한 이상적인 접근방식이라고 강조했다. 아누쉬리 버마(Anushree Verma) 가트너 시니어 디렉터 애널리스트는 “현재 대부분의 에이전틱 AI 프로젝트는 초기 실험 단계거나 개념 증명 단계에 있으며, 과대광고에 의해 추진되거나 잘못 적용되는 경우가 많다. 대규모 AI 에이전트 도입에 드는 실제 비용과 복잡성을 간과할 경우, 실운영 단계로 넘어가지 못하고 정체될 수 있다”면서, “에이전틱 AI로부터 실질적인 가치를 얻으려면 개별 업무에 대한 보조보다는 기업 생산성 향상에 집중해야 한다. 기업은 의사결정을 위한 AI 에이전트, 반복적인 워크플로를 위한 자동화, 간단한 정보 검색을 위한 어시스턴트 활용부터 에이전틱 AI 도입을 시작할 수 있다. 핵심은 비용 절감, 품질 상승, 속도 향상, 규모 확대를 통한 비즈니스 가치 창출”이라고 조언했다.
작성일 : 2025-06-25
레드햇-메타, “엔터프라이즈용 오픈소스 AI 발전 위해 협력”
레드햇과 메타는 엔터프라이즈용 생성형 AI의 발전을 촉진하기 위해 새롭게 협력한다고 발표했다. 이번 협력은 레드햇이 레드햇 AI(Red Hat AI)와 고성능 vLLM 추론 서버에서 메타의 라마 4(Llama 4) 모델 그룹을 0일차부터 지원하는 것에서 시작됐다. 이를 기반으로 레드햇과 메타는 라마 스택(Llama Stack)과 vLLM 커뮤니티 프로젝트의 연계를 주도해 오픈 생성형 AI 워크로드의 통합 프레임워크를 촉진한다. 가트너(Gartner)에 따르면 2026년까지 독립 소프트웨어 벤더(ISV)의 80% 이상이 엔터프라이즈용 애플리케이션에 생성형 AI 기능을 내장할 것으로 예상되며, 이는 현재의 1% 미만에서 크게 증가한 수치이다. 이는 레드햇과 메타가 추진하고 있는 개방적이고 상호 운용 가능한 기반 기술의 필요성을 보여준다. 양사의 협력은 다양한 플랫폼, 클라우드 및 AI 가속기 전반과 주요 API 계층 및 AI의 실행 단계인 추론 제공(serving) 시 더욱 원활한 생성형 AI 워크로드 기능에 대한 요구사항을 직접적으로 해결하는 데에 초점을 맞추고 있다. 레드햇과 메타는 핵심 오픈소스 프로젝트에 주요 기여자로 적극 참여하며, 개방형 혁신에 대한 강한 의지를 보여준다는 계획이다. 여기에는 메타가 개발하고 오픈소스화한 플랫폼으로 전체 생성형 AI 애플리케이션 라이프사이클을 혁신하는 표준화된 구성 요소와 API를 제공하는 ‘라마 스택’, 대규모 언어 모델(LLM)을 위한 고도로 효율적이고 최적화된 추론을 가능하게 하는 오픈소스 플랫폼을 구현하는 ‘vLLM’ 등이 있다. 이번 협력의 일환으로 레드햇은 라마 스택 프로젝트에 적극적으로 기여하고 있으며, 레드햇 AI를 기반으로 혁신적인 에이전틱 AI 애플리케이션을 구축하는 개발자에게 매력적인 선택지가 될 수 있도록 라마 스택의 역량 강화에 기여하고 있다. 레드햇은 레드햇 AI를 통해 라마 스택을 포함한 다양한 에이전틱 프레임워크 지원을 지속하며 고객의 도구와 혁신 선택권을 촉진한다. 이러한 지원은 차세대 AI 설루션의 개발 및 배포를 가속화하는 견고하고 유연한 환경을 제공하는 것을 목표로 한다. 효율적인 개방형 생성형 AI 분야의 새로운 지평을 열어가고 있는 vLLM 프로젝트는 메타의 커뮤니티 기여 확대 의지에 의해 더욱 큰 추진력을 얻고 있다. 이번 협력을 통해 vLLM은 라마 4를 시작으로 라마 모델 그룹의 최신 세대에 대한 0일차 지원을 제공할 수 있는 능력을 갖추게 된다. 또한 vLLM은 메타와 다른 기업이 개방적이고 포용적인 도구 생태계를 조성하기 위해 협력하는 파이토치 생태계(PyTorch Ecosystem)의 일부이다. 이러한 검증을 통해 vLLM은 기업에서 생성형 AI 가치를 실현하는 최전선에 자리매김한다. 레드햇의 마이크 페리스(Mike Ferris) 수석 부사장 겸 최고 전략 책임자는 “레드햇과 메타는 AI의 미래 성공이 모델 발전뿐만 아니라 사용자가 차세대 모델의 혁신적인 기능을 극대화할 수 있도록 하는 추론 기능이 필요하다는 점을 인식하고 있다”면서, “라마 스택과 vLLM에 대한 양사의 공동 약속은 가속기나 환경에 관계 없이 하이브리드 클라우드 전반에서 필요한 곳 어디서든 더 빠르고 일관되며 비용 효율적인 생성형 AI 애플리케이션을 실현하는 비전을 달성하기 위한 것이다. 이것이 바로 AI의 개방형 미래이며 레드햇과 메타가 맞이할 준비가 된 미래”라고 말했다. 메타의 애시 자베리(Ash Jhaveri) AI 및 리얼리티 랩스 파트너십 부문 부사장은 “레드햇과 협력하여 라마 스택을 생성형 AI 애플리케이션을 원활하게 구축하고 배포하는 업계 표준으로 확립하는데 기여하게 되어 기쁘다”면서, “이번 협력은 개방형 혁신과 기업이 AI 기술의 잠재력을 최대한 활용할 수 있도록 지원하는 견고하고 확장 가능한 AI 설루션 개발에 대한 양사의 노력을 보여준다. 레드햇과 함께 메타는 라마 모델과 도구가 엔터프라이즈 AI의 기반이 되어 산업 전반에서 효율성과 혁신을 주도하는 미래를 위한 길을 닦고 있다”고 전했다.
작성일 : 2025-06-10