오픈소스 LLM 모델 젬마 3 기반 AI 에이전트 개발해 보기
BIM 칼럼니스트 강태욱의 이슈 & 토크
이번 호에서는 최근 이슈인 AI 에이전트(agent) 개발 시 필수적인 함수 호출(function call) 방법을 오픈소스를 이용해 구현해 본다. 이를 위해 구글에서 공개한 젬마 3(Gemma 3) LLM(대규모 언어 모델)과 역시 오픈소스인 LLM 관리도구 올라마(Ollama)를 활용하여 간단한 AI 에이전트를 로컬 PC에서 개발해본다. 아울러, 이런 함수 호출 방식의 한계점을 개선하기 위한 설루션을 나눔한다.
■ 강태욱
건설환경 공학을 전공하였고 소프트웨어 공학을 융합하여 세상이 돌아가는 원리를 분석하거나 성찰하기를 좋아한다. 건설과 소프트웨어 공학의 조화로운 융합을 추구하고 있다. 팟캐스트 방송을 통해 이와 관련된 작은 메시지를 만들어 나가고 있다. 현재 한국건설기술연구원에서 BIM/ GIS/FM/BEMS/역설계 등과 관련해 연구를 하고 있으며, 연구위원으로 근무하고 있다.
페이스북 | www.facebook.com/laputa999
블로그 | http://daddynkidsmakers.blogspot.com
홈페이지 | https://dxbim.blogspot.com
팟캐스트 | www.facebook.com/groups/digestpodcast
이번 호의 글은 다음 내용을 포함한다.
AI 에이전트 구현을 위한 사용자 도구 함수 호출 방법
올라마를 통한 젬마 3 사용법
채팅 형식의 프롬프트 및 메모리 사용법
그라디오(Gradio) 기반 웹 앱 개발
그림 1. AI 에이전트 내부의 함수 호출 메커니즘(Akriti, 2025)
이 글의 구현 코드는 다음 링크에서 확인할 수 있다.
AI_agent_simple_function_call
젬마 3 모델의 특징
젬마 3는 구글이 개발해 2025년 3월 10일에 출시한 LLM이다. 차세대 경량 오픈 멀티모달 AI 모델로, 텍스트와 이미지를 동시에 처리할 수 있는 기능을 갖추고 있다. 이 모델은 다양한 크기와 사양으로 제공되어 단일 GPU 또는 TPU 환경에서도 실행 가능하다.
젬마 3는 1B, 4B, 12B, 27B의 네 가지 모델 크기로 제공되며, 각각 10억, 40억, 120억, 270억 개의 파라미터를 갖추고 있다. 1B 모델은 텍스트 전용으로 32K 토큰의 입력 컨텍스트를 지원하고, 4B/12B/27B 모델은 멀티모달 기능을 지원하며 128K 토큰의 입력 컨텍스트를 처리할 수 있다. 이는 이전 젬마 모델보다 16배 확장된 크기로, 훨씬 더 많은 양의 정보를 한 번에 처리할 수 있게 해 준다.
이 모델은 텍스트와 이미지 데이터를 동시에 처리하고 이해하는 멀티모달 기능을 제공한다. 이미지 해석, 객체 인식, 시각적 질의응답 등 다양한 작업을 수행할 수 있으며, 텍스트 기반 작업에 시각적 정보를 효과적으로 활용할 수 있도록 지원한다.
그림 2. 출처 : ‘Welcome Gemma 3 : Google's all new multimodal, multilingual, long context open LLM(Hugging Face)’
그림 3. 출처 : ‘Welcome Gemma 3 : Google's all new multimodal, multilingual, long context open LLM(Hugging Face)’
젬마 3는 140개 이상의 언어를 지원하여 전 세계 다양한 언어 사용자를 대상으로 하는 AI 애플리케이션 개발에 매우 유리하다. 사용자는 자신의 모국어로 젬마 3와 상호작용할 수 있으며, 다국어 기반의 텍스트 분석 및 생성 작업도 효율적으로 수행할 수 있다.
이 모델은 다양한 작업 수행 능력을 갖추고 있다. 질문–답변, 텍스트 요약, 논리적 추론, 창의적인 텍스트 형식 생성(시, 스크립트, 코드, 마케팅 문구, 이메일 초안 등), 이미지 데이터 분석 및 추출 등 광범위한 자연어 처리 및 컴퓨터 비전 관련 작업을 수행할 수 있다. 또한, 함수 호출 및 구조화된 출력을 지원하여 개발자가 특정 작업을 자동화하고 에이전트 기반의 경험을 구축하는 데 도움을 준다.
젬마 3는 다양한 도구 및 프레임워크와 원활하게 통합된다. Hugging Face Transformers, Ollama, JAX, Keras, PyTorch, Google AI Edge, UnSloth, vLLM, Gemma. cpp 등 다양한 개발 도구 및 프레임워크와 호환되어 개발자들이 자신이 익숙한 환경에서 젬마 3를 쉽게 활용하고 실험할 수 있다.
이 모델은 다양한 벤치마크 테스트에서 동급 모델 대비 최첨단 성능을 입증했다. 특히, Chatbot Arena Elo Score에서 1338점을 기록하며, 여러 오픈 소스 및 상용 모델보다 높은 성능을 보였다.
젬마 3는 오픈 모델로, 개방형 가중치를 제공하여 사용자가 자유롭게 조정하고 배포할 수 있다. 캐글(Kaggle)과 허깅 페이스(Hugging Face)에서 다운로드 가능하며, Creative Commons 및 Apache 2.0 라이선스를 따름으로써 개발자와 연구자에게 VLM 기술에 대한 접근성을 높여준다.
개발 환경
개발 환경은 다음과 같다. 미리 설치 및 가입한다.
오픈 LLM 관리 도구 올라마 : https://ollama.com/download/ windows
LLM 모델 젬마 3 : https://ollama.com/search dashboard
웹 검색 도구 Serper 서비스 가입 : https://serper.dev/
설치되어 있다면 다음 명령을 터미널(윈도우에서는 도스 명령창)에서 실행한다.
ollama pull gemma3:4b
■ 자세한 기사 내용은 PDF로 제공됩니다.
강태욱
작성일 : 2025-08-04
조회수 : 699