• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
생성형 AI 데이터 학습에 사용되는 딥러닝 강화학습의 개념과 구조
앤시스 차지 플러스의 비접촉 정전기 방전 해석
옛 사진 데이터베이스
  • 전체
  • 범용
  • 기계
  • 건축
  • 그래픽
  • 기타
크레오 파라메트릭 10.0의 시뮬레이션 기반 설계
제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (10)   이번 호에서는 최신 앤시스(Ansys) 기술이 적용된 크레오 파라메트릭 10.0(Creo Parametric 10.0)의 시뮬레이션 기반 설계에 대하여 알아보자.   ■ 김성철 디지테크 기술지원팀의 이사로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 이메일 | sckim@digiteki.com 홈페이지 | www.digiteki.com   크레오 파라메트릭 10.0은 설계 엔지니어가 좀 더 편리하게 활용할 수 있는 PTC와 앤시스의 최신 표준 시뮬레이션 기능이 포함되어 있다. 설계자는 시뮬레이션에 대한 전문가 수준의 지식이 없어도 친숙한 크레오 사용자 환경에서 실시간 시뮬레이션(CSL) 기능을 사용하여 제품 설계 초기에 시뮬레이션 기반 설계로 다양한 설계안을 빠르게 검토할 수 있다. 이후에는 세부 설계에서 앤시스 시뮬레이션(CAS)으로 좀 더 정확도 높은 시뮬레이션을 수행하여 설계의 문제 영역을 빠르게 분석하고 파악할 수 있다.   크레오 시뮬레이션 기능으로 제품 개발 초기에 시뮬레이션 기반 설계 크레오 파라메트릭 10.0에서 전기 모터 모델을 예로 초기 개념 설계 단계에서 실시간 시뮬레이션을 수행하여 다양한 설계를 빠르게 분석하고 최적의 설계안을 검토해 보자.     전기 모터의 하우징 모델에서 방열 조건을 개선하기 위해 몇 가지 유형의 아이디어가 모델에 적용되었다. 어떤 유형의 코일 설계가 가장 최적인지 실시간 시뮬레이션을 이용하여 빠르게 분석해 보자.   크레오 시뮬레이션 라이브(CSL)로 유체 시뮬레이션 검토 분석 모델을 열고 메뉴의 ‘라이브 시뮬레이션(Live Simulation)’에서 ‘유체 시뮬레이션 검토(Fluid Simulation Study)’를 선택한다.     유체 시뮬레이션을 위해 ‘유체 도메인(Fluid Domain)’에서 다양한 방법으로 내부/외부 유체 도메인을 빠르게 생성하거나 추출할 수 있다. ‘내부 볼륨(Internal Volume)’을 선택하여 하우징 내부의 코일 삽입 공간을 빠르게 추출한다.     유로의 입구와 배출구의 경계 서피스를 선택하면 닫힌 볼륨 영역을 자동 인식하여 빠르게 내부 볼륨을 추출하고 유체 도메인을 생성할 수 있다.     시뮬레이션 트리에서 생성된 유체 도메인을 확인하고 ‘재료 편집(Edit Materials)’에서 재료를 ‘WATER’로 지정한다.     ‘경계 조건(Boundary Conditions)’에서 ‘배출구 압력(Outlet Pressure)’을 선택하고, 추출된 유체 도메인에서 서피스를 지정한 후 배출구 압력 강도와 단위를 지정해 준다.     ■ 상세한 기사 내용은 PDF로 제공됩니다.
김성철 작성일 : 2024-03-05 조회수 : 1393
앤시스 차지 플러스의 비접촉 정전기 방전 해석
앤시스 워크벤치를 활용한 해석 성공사례   앤시스 차지 플러스(Ansys Charge Plus)는 재료의 충전과 방전 현상을 분석하기 위한 시뮬레이션 프로그램으로, 2021년에 국내에 처음 도입되었다. 앤시스 차지 플러스를 이용하면 그동안 해석하기 어려웠던 Air ESD(비접촉 정전기 방전)를 쉽고 간단하게 해석할 수 있다. 이번 호에서는 Air ESD의 영향을 평가하고 방전을 방지하거나 줄이기 위한 앤시스 차지 플러스의 사용법에 대해 간단하게 소개하고자 한다.   ■ 김대현 태성에스엔이 EBU HF팀 매니저로 RF/Antenna 해석 및 Ansys EMC & Charge Plus에 대한 기술지원을 담당하고 있다. 이메일 | dhkim22@tsne.co.kr 홈페이지 | www.tsne.co.kr   앤시스 차지 플러스는 EMA3D Charge의 후속 버전으로, 2021년 9월에 출시되었다. 앤시스 차지 플러스는 앤시스의 다른 전자기장, 유동 제품군과 연동이 용이하고, 앤시스 디스커버리(Ansys Discovery) GUI를 사용하여 프로그램 접근성이 뛰어나다. 앤시스 차지 플러스는 항공우주, 전기전자, 자동차 산업과 같은 다양한 분야에서 대전, 입자 이동, 아크(arc) 등의 문제를 예방하거나 해결할 수 있다. 또한, 멀티피직스 시뮬레이션을 통해 플라스마 및 ESD와 관련된 다양한 현상을 정확하고 빠르게 해석할 수 있고, Air ESD 문제를 효과적으로 해결할 수 있다.   앤시스 차지 플러스 소개 앤시스 차지 플러스는 과거 ‘EMA3D Charge’라고 불리던 시뮬레이션 툴이 리뉴얼되어 ‘차지 플러스’로 이름이 바뀌었다. 간략하게 소개를 하자면 ‘앤시스 EMC 플러스(Ansys EMC Plus)’와 ‘앤시스 차지 플러스(Ansys Charge Plus)’로 구분된다. EMC 플러스의 경우 플랫폼 단위에서 Electromagnetic Cable을 모델링 혹은 EMC 해석을 진행할 때 유용한 시뮬레이션 소프트웨어이고, 차지 플러스는 다수의 솔버를 이용한 멀티피직스 해석이 가능한 시뮬레이션 솔루션이다. 앤시스 차지 플러스는 시간 도메인(time domain) 솔버를 사용하여 공기, 재료의 표면 및 내부 아크를 분석하고, FEM Electromagnetics, Fluid, Particle 솔버를 통해 플라스마 환경을 해석한다. 차지 플러스는 디스커버리 GUI를 사용하여 기존의 사용자들이 쉽고 빠르게 CAD 모델을 단순화하고, 시뮬레이션 환경의 정의 및 해석을 진행할 수 있다. <그림 1>은 앤시스 차지 플러스의 GUI를 나타낸 그림이다. 앤시스 차지 플러스의 GUI는 앤시스 디스커버리와 동일하게 구성되어 있고, 사용자의 편의를 위해 <그림 2>와 같이 어두운 테마(Dark Theme)와 밝은 테마(Light Theme)를 제공하여 사용자는 취향과 환경에 맞게 테마를 선택할 수 있다.   그림 1. 앤시스 차지 플러스 GUI   그림 2. 앤시스 차지 플러스 테마   ESD란 ESD(Electrostatic Discharge)는 정전기 방전이라고 하며 양극과 음극으로 대전된 물체가 접촉하여 일시적으로 전하의 이동이 발생하는 현상을 의미한다. 주로 건조한 환경에서 발생하며, 두 물체 사이의 전압 차이가 크면 공기 또는 다른 매질을 통해 전하가 이동하여 방전 현상이 생길 수 있다. 이 방전은 짧은 시간 동안 매우 높은 전류를 생성할 수 있어 전자 부품이나 회로에 손상을 입히고, 특히 반도체나 집적 회로와 같이 민감한 전자제품에 심각한 손상을 가할 수 있다. ESD는 접촉 방식과 비접촉 방식이 있다. 비접촉 방식 ESD는 물체에 직접적으로 접촉하지 않아도 정전기 방전이 발생할 수 있는 경우를 말하며, 주로 물체가 전하로 충전된 상태로 서로에게 근접할 때 발생한다. 예를 들어, 사람의 손이 전자 부품 근처에 오는 것만으로도 전자 부품 주변의 공기가 충분히 전하를 이동시키고 공기를 통해 정전기 방전이 발생할 수 있다. 비접촉식 ESD는 주로 공기나 다른 매질을 통해 전하가 이동하고 이로 인해 방전이 발생한다. 접촉식의 경우 앤시스 HFSS를 통한 해석이 가능하나, 비접촉식 즉 Air ESD의 경우는 HFSS를 통한 해석이 쉽지 않았다. 그러나 앤시스 차지 플러스가 출시되면서 <그림 3>과 같은 ESD 웨이브폼(Waveform)을 사용하여 Air ESD를 간단한 설정을 통해 해석이 가능하게 되었다.   그림 3. ESD 웨이브폼   ■ 상세한 기사 내용은 PDF로 제공됩니다.
김대현 작성일 : 2024-03-05 조회수 : 885
연비와 공기역학 : 자동차 디자인의 음과 양
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (7)   자동차의 공기역학은 연비 향상과 소음 감소 등의 목표를 달성하기 위한 방법으로서 고려되었다. 공기역학 성능을 향상시키기 위해 자동차 업계는 축소 모델링과 풍동 실험을 거쳐 현재는 CFD 시뮬레이션을 적극 활용하고 있다. CFD 시뮬레이션은 유동 이론과 컴퓨터 기술의 발전에 힘입어 복잡한 차체를 시뮬레이션하고 최적의 설계를 결정하는 데에 도움을 준다.   ■ 자료 제공 : 나인플러스IT, www.vifs.co.kr   클래식 모델 T부터 상징적인 아메리칸 머슬카에 이르기까지 자동차의 디자인은 수년에 걸쳐 다양한 요인에 의해 형성되었다. 기술 발전, 소비자 선호도, 정부 규제 등이 모두 영향을 미쳤다. 하지만 그 중에서도 가장 큰 영향을 미친 요소는 연비이다. 1973년 석유 금수 조치의 여파로 도입된 기업 평균 연비(CAFE : Corporate Average Fuel Economy) 기준은 자동차 제조업체가 연비에 집중하도록 만들었다. 처음에는 평균 14.2mpg의 연비를 의무화했던 CAFE 표준은 이후 업데이트되어, 현재는 2032년까지 차량 전체 평균 58mpg를 목표로 하고 있다. 자동차 제조업체들이 이러한 야심찬 목표를 달성하기 위해 노력함에 따라 공기역학의 역할이 점점 더 중요해지고 있다. 과거에는 자동차 디자인을 테스트하고 개선하기 위해 축소 모델링 기법을 사용했다. 오늘날에는 전산 유체 역학(CFD)과 같은 정교한 컴퓨터 시뮬레이션이 자동차의 공기역학을 최적화하는 데에 사용된다. 현대 자동차의 날렵한 라인에 감탄할 때, 단순히 외형만이 아니라 모든 곡선과 윤곽이 연료 효율을 극대화하고 공기 저항을 최소화하도록 세심하게 설계되었다는 사실을 떠올려 보는 것도 좋을 것이다.   자동차 디자인 100년 들여다보기 1900년~1930년 1900년대 초반의 자동차는 특별한 미학을 염두에 두고 디자인되지 않았다. 자동차는 주로 실용적인 목적으로 제작되었다. 1908년 최초의 대량 생산 자동차인 포드의 모델 T가 출시되면서 자동차 산업의 판도가 완전히 바뀌었다. 모델 T는 4기통 엔진을 탑재하고 연비가 13~21마일로 오늘날의 평균적인 자동차보다 약간 낮았다. 하지만 이 차를 차별화한 것은 경제성이었다. 1910년 780달러였던 모델 T의 가격은 1924년에 290달러로 떨어졌다. 이는 대량 생산을 통해 달성한 비용 절감 덕분에 가능했다.   ▲ 포드 모델 T   1930년~1940년 1930년대에 들어서면서 세계는 대공황에 빠졌다. 주식 시장은 폭락했고, 미국 자동차 산업은 특히 큰 타격을 받아 신차 판매가 75%나 급감했다. 설상가상으로 1920년 갤런당 30센트였던 연료 가격이 1929년에는 21센트로 급격히 하락했다. 자동차 생산량도 타격을 받아 1929년 540만 대에서 1932년 340만 대로 감소했다. 자동차의 비용 효율을 높이기 위해서는 분명 무언가 조치가 필요했다. 이때부터 자동차 제조업체들은 공기역학에 대해 생각하기 시작했다. 엔진을 바꾸는 대신 자동차의 디자인을 간소화하여 효율을 높였다. 항공과 아르데코(Art Deco)에서 영감을 받은 새로운 자동차 디자인은 깔끔하고 단순한 외관을 선호했다. 30대 중반에는 폭스바겐 비틀, 크라이슬러 에어플로우, 1938년 팬텀 코르세어 등 상징적인 공기역학 차량이 탄생했다.   ▲ 부가티 타입 57 그랜드 레이드(1935년)   1940년~1950년 1940년대 초, 세계대전이 발발하면서 자동차 제조업체들은 군용 차량 부품 생산에 주력할 수밖에 없었다. 그 결과 가정용 자동차 생산은 중단되었고 자동차 소유율은 73%까지 급감했다. 하지만 제2차 세계대전 참전용사들은 이 어려운 시기에 드래그 레이싱에 참여하기 시작했다. 1950년대가 되어서야 산타아나 활주로에서 최초의 공식 드래그 레이스가 열렸다. 이 대회는 빠르게 인기를 얻었고, 1951년에는 전국에 있는 수많은 레이싱 클럽을 감독하기 위해 전미 핫로드 협회(NHRA : the National Hot Rod Association)가 설립되었다. 전쟁이 끝나자 자동차 업계는 폰툰 스타일을 도입하여 작은 혁명을 일으켰다. 이 새로운 스타일은 현대 자동차 디자인의 기초가 되었다. 그러나 이 폰툰은 공기 저항을 가중시켜 평균 연비가 15~20마일로 낮아졌다.   1950년~1960년 1950년대에는 자동차 디자인의 세계가 양분되었다. 미국 자동차 디자이너들은 항공기와 우주선에서 영감을 받아 각지고 박스형의 디자인을 만들며 미래를 생각했다. 반면, 유럽의 자동차 디자이너들은 공기 저항의 과학에 집착하여 최대한 유선형의 자동차를 만들기 위해 노력했다.   ▲ 재규어 C-타입   1956년 6월 29일, 고속도로 건설을 위해 무려 250억 달러가 지원되는 연방 원조 고속도로 법이 통과되었다. 미국 자동차는 갑작스럽게 이 새로운 고속도로의 고속 주행에 최적화되어야 했다. 이러한 초점의 변화는 더 날렵하고 공기역학적인 모델이 중심이 되는 새로운 자동차 디자인 시대로 이어졌다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
나인플러스IT 작성일 : 2024-03-05 조회수 : 901
제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (9)
설계 탐색(DEX) 기능 활용하기   이번 호에서는 크레오 파라메트릭 10.0(Creo Parametric 10.0)에서 설계 탐색을 이용하여 콘셉트 디자인을 만드는 기능에 대해 알아보자. Design Exploration Extension(DEX)은 파라메트릭 환경에서 여러 가지 콘셉트 디자인 옵션을 쉽고 빠르게 비교할 수 있는 기능이다. 이 기능을 통해 여러 버전을 관리할 필요가 없어 데이터 관리에 용이하다.   ■ 박수민 디지테크 기술지원팀의 과장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 홈페이지 | www.digiteki.com   DEX 기능 설명 DEX 기능별 명령어에 대해 알아보자.  체크포인트 트리를 숨기기  체크포인트 트리를 표시하기  새 체크포인트를 추가  세션의 모든 모델을 백업  설계 탐색 세션을 저장  설계 탐색 세션을 매개 변수 세션으로 적용  설계 탐색 세션을 취소하고 닫기  선택한 체크포인트를 업데이트  선택한 체크포인트를 활성화  선택한 체크포인트를 삭제  변경 사항 보기(View Changes) 대화 상자 열기  체크포인트 특성(Checkpoint Properties) 대화 상자 열기  설계 탐색 보고서(Design Exploration Report) 대화 상자 열기   설계 탐색 시작하기 설계 탐색을 진행할 모델 데이터를 열어놓고 파일 → 세션 관리 → 설계 탐색 세션 → 시작을 선택하여 설계 탐색(DEX)을 시작한다.     새로운 설계 탐색 세션의 이름과 설명을 작성하고 설계 탐색을 시작한다.     팔걸이 부품을 새로운 콘셉트로 생성해보자. 팔걸이 부품을 활성화하여 사전에 생성한 스케치를 새로운 콘셉트에 맞춰 수정한다.     스케치1(측면 뷰)을 먼저 새로운 콘셉트에 따라 수정한다. 불필요한 선을 제거하고 새로운 선으로 구성한다.   ▲ 수정 전 스케치   ▲ 수정 후 스케치   스케치 2(상단 뷰)도 스케치를 수정한다. 이때 참조 방향을 변경하여 새로운 콘셉트 디자인으로 스케치를 수정한다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
박수민 작성일 : 2024-02-02 조회수 : 1405
DX의 목표는 인간의 지식과 지혜를 디지털화하는 것
제조업 DX, 3D 데이터의 목표는? (2)   제조산업의 디지털 전환(DX)을 위해서는 3D 설계 데이터를 제조 프로세스 전반에 효율적으로 공유하고 활용하는 것이 중요하게 여겨진다. 지난 호에 이어 이번 호에서도 3DA(3D Annotated Model) 모델의 배포, 3D 데이터의 변환, 설계 품질의 자동 검증이 왜 필요한지 짚어보고, 이를 구현하기 위한 엘리시움(Elysium)의 기술에 대해 소개한다. 이 글의 내용은 '100 Digital Transformation Cases'라는 책에 기고된 기사를 재편집한 것이다.   ■ 자료 제공 : 아이지피넷   성공적인 3DA 모델 배포의 열쇠 - 데이터 품질 단순 변환만으로는 충분하지 않다 지난 호에서 3D 데이터를 다른 포맷으로 높은 정확도로 변환하는 기술의 어려움과 중요성에 대해 설명했다. 하지만, 사실 변환 중에 단순히 왼쪽에서 오른쪽으로 정보를 전송하는 것만으로는 3DA 모델의 원활한 배포를 얻을 수 없다. 중요한 것은 변환된 데이터의 품질이다. 이러한 맥락에서 품질은 ‘요구 사항을 얼마나 잘 충족하는지’이다. 회사별, 부서별, 툴별 노트와 속성에 대한 요구사항, 규칙, 표현방법 등 다양한 요구사항이 존재하며, 그 품질을 확인하기가 쉽지 않다. 이러한 이유로 엘리시움은 고객의 맞춤화를 전제로 데이터 변환 및 품질 검사를 수행하는 도구를 개발했다. 품질 확인 프로세스와 표준화 프로세스를 분리하고 3DA 모델의 배포를 촉진하는 것이 아이디어이다. 커스터마이징을 전제로 하는 제품의 예로는 ENF 에디터(ENF Editor)가 있다. 엘리시움의 독자 파일 형식인 ENF(Elysium Neutral File) 데이터를 사용하여 고객이 변환 방법을 자유롭게 구성할 수 있는 도구이다. 예를 들어, 특정 속성에 부착한 후 특정 색상으로 부품을 변환하는 것과 같이 회사와 부서 간의 차이에 따라 고급 변환을 수행할 수 있다. ENF 에디터에서 데이터 변환에 대한 규칙을 설정하면 버튼 터치로 원하는 데이터를 출력할 수 있으며, 번거로움 없이 3DA 모델의 배포를 실현할 수 있다.   그림 1. 데이터 변환 사용자 지정의 예   두 가지 유형의 품질 검사 데이터 품질을 보장하는 두 가지 주요한 방법이 있다. 단일 데이터를 확인하는 검증과 원본 데이터와 변환된 데이터가 동일한지 확인하는 신원 검증은 모두 필수 프로세스이다.   설계 데이터를 단일 단위로 확인 PDQ(제품 데이터 품질) 검증 애초에 데이터의 유효성을 검사하고 수정해야 하는 이유는 무엇일까? 여기에는 네 가지 이유가 있다. 첫 번째는 CAD 소프트웨어와 시스템마다 곡선과 표면의 수학적 표현이 다르다는 것이다. 두 번째는 각 CAD가 요소 간의 연결 정도를 나타내는 위상 정보에 대해 서로 다른 한계를 갖는다는 것이다. 이러한 표현 및 사양의 차이로 인해 서로 다른 소프트웨어와 시스템 간의 데이터 호환성이 낮아진다. 세 번째 이유는 CAD 소프트웨어마다 설정한 공차 값이 다르기 때문이다. 예를 들어, 한 소프트웨어는 가장자리가 0.1mm 미만인 경우 두 가장자리의 끝점이 일치한다고 인식하지만, 다른 소프트웨어는 허용오차 값이 훨씬 더 작기 때문에 가장자리를 별개의 것으로 취급한다. 네 번째는 데이터 생성 과정에서 운영자 자신이 알아차리기 어려운 인적 오류의 발생이다. 여기에는 미세한 단계와 겹치는 표면이 포함된다. 이러한 모든 데이터 결함을 수동으로 찾는 것은 불가능하다. 따라서 엘리시움은 이러한 결함을 자동으로 감지하고 자동으로 수정하는 소프트웨어를 개발하고 있다. 이 소프트웨어는 모든 CAD 소프트웨어 파일 형식과 호환된다. 데이터 검증 시 후처리에 사용할 CAD의 종류를 설정하면 최적의 검증 항목이 자동으로 설정되며, 사용자를 헷갈리지 않는 세부적인 기능을 가지고 있다. 설계 데이터의 자동 수정은 사용자가 다양한 파라미터를 임의로 설정할 수 있는 것도 중요하고, 용도에 따라 유연한 가공을 할 수 있다. 예를 들어, 제품을 성형할 때 중요한 표면의 매끄러움을 우선시하고 싶다면 멀리 있는 면의 연속성을 유지하고 수정하도록 설정할 수 있다. 또한 수정하는 대상 표면을 제한할 수 있으며, 설계에 중요한 디자인 표면은 전혀 변경되지 않도록 미리 지정할 수 있다. 이처럼 디지털화와 자동화를 목표로 하고 있더라도 단순히 한 번에 처리하는 것이 아니라, 세부적으로 커스터마이징할 수 있는 것이 실제로 필요하다는 것을 인식하는 것이 중요하다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
아이지피넷 작성일 : 2024-02-02 조회수 : 1358
앤시스 스페오스를 활용한 라이트 가이드 설계와 해석
앤시스 워크벤치를 활용한 해석 성공사례   이번 호에서는 국제 조명 위원회(CIE)의 CIE 171:2006 테스트를 거쳐 광학 모델링 소프트웨어로서 정확성을 인증받은 앤시스 스페오스(Ansys Speos)를 활용하여, 최근 자동차 램프에 많이 적용되고 있는 라이트 가이드(light guide)의 설계 방법 및 해석 방법에 대하여 소개하고자 한다.   ■ 최낙정 태성에스엔이 SBU팀 매니저로 광학 프로그램에 대한 기술 지원을 담당하고 있다. 홈페이지 | www.tsne.co.kr   앤시스 스페오스 소개 앤시스 스페오스(Ansys Speos)는 자동차, 전자 제품, 조명, 레이저 및 머신 비전, 항공 우주, 생물 의학 연구 분야의 글로벌 기업이 사용하는 광학 시스템 최적화 및 검증을 위한 전문 해석 솔루션이다. 광학 부품의 정밀한 해석을 위해 인간의 시각 능력을 반영하여 해석 및 다양한 분석 기능을 제공하며, 광 성능 분석에 기본이 되는 광도, 조도, 휘도 분석 이외에도 색상, 재료, 질감, 눈부심 효과 등이 고려된 가시성 분석이 가능하다.   ▲ 앤시스 스페오스를 통해 해석된 자동차 점등 이미지   또한, OPD(Optical Part Desing) 기능을 활용하여 라이트 가이드, 프리폼 렌즈(freeform lens) 등 다양한 형태의 렌즈를 손쉽게 설계하고, GPU를 사용한 시뮬레이션이 가능하기 때문에 설계부터 해석까지 시간과 비용을 절감할 수 있다.   ▲ 앤시스 스페오스에서 제공하는 다양한 OPD 기능   라이트 가이드란 라이트 가이드(light guide)는 기본적으로 사용자가 원하는 목표 지점까지 광손실을 최소화하여 빛을 보내기 위한 광학 구조물이다. 램버시안 분포로 나오는 빛을 믹싱(mixing)하여 균일하게 만들어 주는 역할을 하기도 하고, 사용자의 목적에 따라 프리즘 옵틱을 적용하여 광원부를 노출시키지 않고 사용자가 원하는 빔 패턴을 만들 수 있어 심미성과 성능을 모두 확보해야 할 때 많이 사용되고 있다.   ▲ 자동차 DRL(Daytime Running Lamp)에 적용된 라이트 가이드   라이트 가이드의 설계 과정 앤시스 스페오스를 활용하면 라이트 가이드를 손쉽게 설계할 수 있다. 기본적으로 라이트 가이드를 생성하기 위해서는 형상 프로파일(profile)과 가이드 커브(guide curve)를 정의해야 한다. 해당 인자를 통해서 원하는 형상으로 라이트 가이드의 베이스를 만들어 줄 수 있다. 라이트 가이드의 베이스를 만들었다면, 빔 패턴을 사용자의 목적에 맞게 만들기 위해서 프리즘 옵틱을 설계해야 한다. 프리즘 옵틱의 설계의 경우 설계 인자가 약 10개 정도 되어 사용자가 원하는 빔 패턴을 만드는데 용이하게 활용할 수 있다. 또한, 효율을 향상시키거나 LED 적용 개수에 따라 라이트 가이드의 입사부 형상에 변화를 주기도 한다. 라이트 가이드의 초기 설계가 완료되었다면, 각 부품에 대한 물성치와 광원, 센서에 대한 정의를 완료한 후 시뮬레이션을 통해 원하는 수준의 광학 성능이 나왔는지 초기 성능 분석을 진행한다. 초기 성능 분석을 통해 만족하지 못한 성능을 보완해주기 위해 스페오스 내에 있는 최적화 도구를 활용하여 최적화 타깃(target) 값을 정의하고 설계 주요 파라미터들을 선정하여 각 파라미터에 대한 최적화를 진행한다. 최적화 완료 후 다시 한 번 시뮬레이션을 진행하여 원하는 수준의 배광 성능이 나왔는지, 점등 필링은 괜찮은지 등을 확인하고 최종적으로 라이트 가이드에 대한 설계를 완료한다.   ▲ 앤시스 스페오스를 활용한 라이트 가이드 설계 단계   ■ 상세한 기사 내용은 PDF로 제공됩니다.
최낙정 작성일 : 2024-02-02 조회수 : 1415
MBD의 성공 비결 및 향후 전망
MBD의 이해와 기업 가치 향상을 위한 전략 (2)   자동차, 항공, 가전 등 산업에서 기업들이 진행해 온 모델 기반 개발(Model Based Development : MBD)이 최근 주목받고 있다. 이번 호에서는 최근 들어 MBD가 주목받는 배경과 성공적인 MBD 활용을 위한 전략을 짚고, 향후 발전 전망에 대해서도 살펴본다.   ■ 오재응 한양대학교 명예교수, LG전자 기술고문   MBD가 지금 주목받고 있는 이유 MBD가 최근 다시 주목을 받는 이유에 대해서 알아보고자 한다. 개개인 단위에서는 지금까지도 개발 부담의 증가를 해결하기 위해 보다 효과적인 디지털 기술의 도입을 모색해 왔다. 한편, 엔지니어링 체인 전체에서 각사가 지견을 공유하고 디지털 개발에 임할 수 있다면 고효율화를 도모할 수 있고, 여기에서 태어난 여유로부터 각사의 개성이나 경쟁력을 발휘하는 것도 가능하다고 할 수 있다. 한편 MBD 방법은 복잡한 요구에 대응하기 때문에 최첨단 개발의 장에서 기술적으로 계속 발전해 온 결과 개발 중의 어느 단계에서도 디지털 모델을 사용하는 것을 가능하게 한다. 이 협조 개발의 기운이 높아지는 것과 기술적으로 성숙하고 있는 모델 베이스 개발 수법의 특성이 매치한 것으로, 자동차 업계 전체가 MBD의 실현을 향해 크게 움직이기 시작했다.   기업이 MBD의 도입 시 현상 과제 - 경영 시스템의 진화 업계 연계를 포함한 각 기업의 노력에 의해 서서히 모델링 데이터의 통일이 진행되어 앞에서 설명한 바와 같이 산.관.학이 연계하는 네트워크가 구축되어 갈 것으로 기대할 수 있다. 각 기업에 있어서는 이것들을 베이스로 하면서 MBD의 실행력을 쌓아 가기 위해서, 다음 세 개의 관점을 가진 구체적인 대처(그림 1)가 필요하다. 자사의 기술력을 답습하여 가상 변환을 진행하는 것 인재를 육성하고 사내의 정착 계몽을 도모하는 것 연계 추진에 필요한 데이터 플랫폼의 구축을 진행하는 것   그림 1. MBD 도입 시 고려해야 할 세 개의 관점   이러한 세 가지 관점을 개별적으로 해결할 뿐만 아니라 밸런스 좋게 추진할 수 있는 매니지먼트 시스템에 각사를 진화시켜 나가는 것이 업계 변혁의 파도에 뒤처지지 않고, 보다 기업 가치를 높이기 위한 열쇠가 된다.(그림 2) 다음에는이 세 개의 관점을 설명한다.   그림 2. MBD 실행력의 획득   기술력의 가상 변환 - 각사 기술의 강점의 파악과 모델화 모델화에 있어서는 자사에서 지금까지 길러 온 기술의 분해(가시화)가 필요불가결하다. 자사 기술의 강점이나 해명할 수 없는 특성을 명확히 하는 것으로 모델이라고 하는 가상으로 변환하기 위한 베이스가 구축된다.(그림 3) 이를 근거로 체인지 매니지먼트의 의사 입력을 실시함으로써, 현장에서의 1D-CAE/3D-CAE의 지식과 실천, 매트랩(MATLAB)/시뮬링크(Simulink) 등 툴 조작 스킬의 습득, MILS/SILS/HILS의 모델 환경 도입이 진행되어 자사 기술의 강점의 파악과 모델화를 통한 자사 기술을 유지한 고정밀 모델의 구현화에 연결된다.   그림 3. 기술력의 가상 변환   인재육성과 정착 계몽 - 모델 개발 스킬 DX 인재의 활약에 의해 MBD는 조직에 정착시킬 수 있다. 이것에는 디지털 인재의 육성뿐만 아니라 변환(transformation) 인재를 육성하는 양쪽이 중요하다.(그림 4) 모델링 기술을 가진 인재가 활약하는 것만으로는 특정 개발에 일시적으로 적용된 대처로 MBD가 끝날 수도 있다. 균형 잡힌 쌍방을 육성하고 조직으로서 지속적으로 평가함으로써, MBD의 효과와 혜택이 올바르게 조직 내로 침투하여 실행력이 정착하게 된다. 효율적인 설계자 육성을 위해서 먼저 부딪히는 도전은 설계자의 교육이다. 현재 설계에 종사하는 모든 멤버를 육성하는 데에는 시간과 비용이 든다. 우선 몇 명에 대해서만 육성을 하면 장애물은 그다지 높지 않다. 매트랩/시뮬링크의 세미나를 정기적으로 개최하고 기초 부분은 조기에 시작할 수 있다. 또 엔지니어링 회사에 설계 모델의 개발을 위탁해 함께 개발을 진행하는 것으로 노하우를 획득하면서 설계자를 육성하는 것도 하나의 방법이다.   그림 4. 인재육성과 정착계몽   데이터 플랫폼 구축 - 사내외의 모델 관리·공유를 신속하게 실시 MBD의 프로세스는 내부 구성 관리 시스템과 외부와의 협력 환경에서 수행된다. 사내외 데이터의 이력 추적을 하면서, 자주 실행되는 시뮬레이션 결과를 온타임으로 저장하는 데이터 플랫폼의 구축도 빠뜨릴 수 없다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
오재응 작성일 : 2024-02-02 조회수 : 1358
대규모 와류 시뮬레이션에 유용한 피델리티 찰스 솔루션
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (6)   대규모 와류 시뮬레이션(LES)은 복잡성과 컴퓨팅 자원의 요구 등 제약이 극복되면서 유용한 난류 시뮬레이션 기술로 떠오르고 있다. 이번 호에서는 최신 수치 및 GPU 가속을 통해 LES 시뮬레이션을 더 저렴하고 쉽게 사용할 수 있는 케이던스의 피델리티 찰스(Fidelity CharLES) 솔루션에 대해 살펴본다.   ■ 자료 제공 : 나인플러스IT   모든 시스템의 공기역학 또는 유동장을 설계할 때 엔지니어는 난기류의 영향을 고려해야 한다. 전산 유체 역학(CFD)의 난류 모델을 사용하면 실제 시나리오에서 발생하는 유체 흐름의 혼란을 포함할 수 있다. 난류를 모델링하기 위해 레이놀즈-평균 나비에-스토크스(Reynolds-Averaged Navier-Stokes : RANS) 방정식이 널리 사용되어 왔으며 컴퓨팅 리소스가 제한되어 있을 때 선호된다. 그러나 이러한 시간 평균 방정식은 연소, 음향, 공기 역학 등과 같은 광범위한 애플리케이션에 필요한 정확도를 제공하지 못한다. 이러한 경우 대규모 와류 시뮬레이션(Large Eddy Simulation : LES)이 유용하다. 시뮬레이션의 복잡성과 대규모 컴퓨팅 요구 사항으로 인해 지난 40년 동안 대부분의 산업 분야에서 LES는 비실용적이었다. 하지만, 오늘날에는 최신 수치 및 GPU 가속을 통해 LES 시뮬레이션이 더 쉽게 접근 가능하고 저렴해졌다.   케이던스 캐스케이드 테크놀로지스의 LES 모델링 역사 1980년 케이던스 캐스케이드 테크놀로지스(Cadence Cascade Technology)의 창립자인 Parviz Moin은 난류 모델링에 관한 획기적인 연구를 수행했다. 당시에는 난기류를 실험적으로 조사하기 위한 수많은 연구가 진행 중이었다. <그림 1>은 경계층에서 수소 기포를 사용하여 수행한 실험을 보여준다. 이 실험은 난기류 속에서 아름답고 일관된, 그러나 혼란스러운 구조를 연구하기 위한 것이었다.   그림 1. 시뮬레이션 결과(Moin & Kim, 1981)(왼쪽)와 실험 결과(Kim, Klein & Reynolds, 1970)  (오른쪽)   Parviz와 그의 동료들은 1981년 미국 물리학회 컨퍼런스에서 NASA Ames 기지의 ILLIAC IV 15MFlops 컴퓨터로 계산한 시뮬레이션을 발표했다. 그 결과 나비에-스토크스 방정식을 시간에 따라 정확하게 예측하여 난기류의 역학과 통계를 모두 포착할 수 있다는 것을 보여주었다. 오늘날 고성능 컴퓨팅의 성능은 1980년 M플롭에서 2023년 1E플롭/s로 크게 발전했으며, 프론티어는 상위 500대 기업 중 선두를 달리고 있다. 최신 솔버 기술과 확장성을 바탕으로 자동차, 항공우주 및 기타 산업에서 충실도 높은 LES의 실제 적용이 증가하고 있다.   오늘날 LES를 가능하게 하는 기술 고충실도 LES의 실제 적용을 가능하게 하는 4가지 차별화 기술은 다음과 같다. 그리드 이산화(Grid Discretization) : 시간에 따라 달라지는 시뮬레이션에서 고품질의 상대적으로 등방성인 그리드의 중요성은 아무리 강조해도 지나치지 않다. 벽 근처에 약간의 이방성이 있으면 도움이 될 수 있지만, 그리드는 시뮬레이션 내내 일관된 품질을 유지해야 한다. 수치적 방법(Numerical Methods) : 강력하고 비선형적으로 안정적인 수치적 방법과 유동 물리학을 정확하게 표현하는 고급 물리 모델을 사용하는 것이 필수적이다. 데이터 분석(Data analytics) : 광범위한 데이터 세트를 생성하게 되므로 이 데이터를 빠르게 시각화하고 이해하는 것이 중요하다. GPU 가속(GPU Acceleration) : GPU에서만 실행되는 최신 CFD 솔버인 GPU 상주 솔버는 필요한 비용 효율적이고 높은 처리량의 시뮬레이션을 제공한다.   그림 2. 1990년부터 2023년까지 성능 개발 목록   수년 동안 LES 모델링의 철학은 저소산 수치 체계가 필요하다는 것이었다. 그러나 이러한 저손실 방식은 다중물리 애플리케이션과 복잡한 지오메트리에서 구축하기 어렵다. 높은 레이놀즈 수 흐름에서 실제 손실은 낮지만, 일반적인 CFD 코드의 수치 손실은 매우 높다. 하지만 피델리티 찰스 솔버(Fidelity CharLES Solver)를 사용하면 안정적인 저손실 수치 체계를 가질 수 있다. 메시 생성의 경우, 피델리티 찰스 솔버는 다양한 해상도의 영역과 그 사이의 전환을 가진 다면체 메시를 생성하는 메시 생성기를 사용한다. 이 메시는 특정 포인트 세트를 중심으로 생성된 3D 보로노이 다이어그램(Voronoi Diagram)이다. 이러한 점을 체계적으로 도입하면 높은 수준의 균일성을 가진 메시가 생성된다. 따라서 피델리티 찰스 솔버는 LES용 메시를 생성하는 데 편리하다.   ■ 상세한 기사 내용은 PDF로 제공됩니다.
나인플러스IT 작성일 : 2024-02-02 조회수 : 1356
제조업 DX의 출발은 3D 데이터의 흐름 관리
제조업 DX, 3D 데이터의 목표는? (1)   제조산업의 디지털 전환(DX)을 위해서는 3D 설계 데이터를 제조 프로세스 전반에 효율적으로 공유하고 활용하는 것이 중요하게 여겨진다. 이번 호부터 2회에 걸쳐 3DA(3D Annotated Model) 모델의 배포, 3D 데이터의 변환, 설계 품질의 자동 검증이 왜 필요한지 짚어보고, 이를 구현하기 위한 엘리시움(Elysium)의 기술에 대해 소개한다. 이 글의 내용은 '100 Digital Transformation Cases'라는 책에 기고된 기사를 재편집한 것이다.   ■ 자료 제공 : 아이지피넷, www.igpnet.co.kr   제조업체가 자주 빠지는 디지털화의 함정 3D CAD 소프트웨어가 많은 제조 산업의 설계 부서에 도입되고 3D 데이터가 제조에 사용된 지 수십 년이 지났다. 전문적인 지식과 경험을 바탕으로 2D 도면에 기반해 입체적인 물체를 상상하는 기존의 방식과는 달리, 이제는 누구나 설계 단계부터 제품의 완성체를 직관적으로 파악할 수 있는 것이 당연해졌다. 제품 데이터 관리를 위한 제품 데이터 관리(PDM) 시스템과 3D 데이터를 다양한 형식으로 변환하기 위한 솔루션이 확산됨에 따라, 이제 3D 데이터는 설계뿐만 아니라 모든 제조 프로세스에서도 공유된다. 언뜻 보면 3D 데이터를 기반으로 한 제조 시스템의 개발로 제조 산업에서 디지털화가 진행된 것처럼 보인다. 그러나 형상 이외에 필요한 정보를 보완하기 위해 현장에서는 여전히 3D 도면과 종이 형태가 2D 데이터와 함께 사용되는 경우가 많다. 아이러니하게도 ‘디지털화’ 그 자체를 목적으로 3D 데이터와 디지털 도구를 제조 공정에 무턱대고 도입하면 아날로그 수작업이 늘어나게 된다. 진지한 기업일수록 이 아날로그 수작업의 효율 향상에 열심이고, 디지털화의 본래 목적과 의미를 놓치기 쉽다.   3DA 모델 배포의 중요성 3DA 모델과 MBD 3D 데이터를 활용한 제조업의 디지털화를 한 단계 끌어올리기 위한 수단으로서, 필요한 정보를 가능한 한 하나의 데이터로 통합하려는 움직임이 있다. 여기에서 3DA(3D Annotated Model)가 등장한다. 3DA 모델은 3D 형상에 다양한 속성 정보(치수, 메모, 수량 등)가 첨부된 데이터이다. 3D 데이터의 정보를 집적하여 제조를 효율화하는 발상은 유럽과 미국에서는 MBD(Model Based Definition : 모델 기반 정의), 일본에서는 ‘3D 포지티브’라고 불리며 대기업을 중심으로 활발히 진행되고 있다. 각 공정에 필요한 모든 정보를 하나의 3DA 모델에 통합하고 공정 전반에 걸쳐 공유하면서 제조를 수행할 수 있다면 효율을 크게 높일 수 있다. 제조업의 미래 성장과 이를 뒷받침하는 디지털 전환을 실현하기 위해서는 3DA 모델이 분산되는 환경을 만들드는 것이 필수이다. 그러나 3DA 모델의 배포를 실현하는 것은 쉽지 않다. 오늘날의 세계에서 글로벌 파트너십과 제휴는 제조 산업에서 보편화되었다. 두 파트너 회사가 동일한 CAD 소프트웨어를 사용하는 경우는 극히 드물며, 서로 다른 소프트웨어 간의 데이터 교환에 거의 항상 오류가 발생하기 때문에 두 회사가 2DA 모델을 자동으로 공유하는 것은 거의 불가능하다.   국제 표준 규격의 기대와 현실 서로 다른 CAD 소프트웨어 간에 3DA 모델을 공유하는 문제를 해결하기 위한 수단으로 국제 표준의 3D 데이터 형식에 대한 기대가 높아지고 있다. 정보의 종류와 저장 방법을 개선함으로써 서로 다른 소프트웨어간에 문제 없이 정보를 전달할 수 있기 때문이다. 표준 형식의 예로는 JT 및 PDF가 있다. 이러한 포맷에 대한 무료 뷰어도 있으며, 기존처럼 CAD 소프트웨어가 설치된 PC에서만 3D 데이터를 확인할 수 있는 등의 제약이 없다. 또한 검사, 조립, 구매, 물류, 판매 등의 다운스트림 프로세스에서도 취급하기 쉽다. STEP은 국제적으로 보장된 표준 형식으로 존재한다. 예를 들어, 자동차 및 항공우주 산업은 향후 수십 년 동안 제품 정보를 저장해야 하며, STEP AP242는 이를 위한 표준으로 정의되고 사용되었다. 이러한 형식은 모두 형상뿐만 아니라 메모 및 속성을 포함하며, CAD 소프트웨어와 독립적으로 3DA 모델 배포를 실현하는 것을 목표로 한다. 그러나 실제로 필요한 속성 정보의 범위가 넓으며 표준 형식의 구현은 아직 따라잡지 못했다.   그림 1. 데이터 변환 중 실패의 원인     ■ 자세한 기사 내용은 PDF로 제공됩니다.
아이지피넷 작성일 : 2024-01-04 조회수 : 1335
크레오 파라메트릭의 GD&T 기능
제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (8)   GD&T(기하공차시스템)은 형상의 허용 가능한 편차를 정의하기 위해 드로잉 및 모델을 설계하는데 사용되는 기호 언어이다. 이번 호에서는 크레오 파라메트릭 GD&T(Creo Parametric GD&T)에 관해 알아보자.    ■ 김주현 디지테크 기술지원팀의 차장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 이메일 | sskim@digiteki.com 홈페이지 | www.digiteki.com   GD&T는 설계 모델 각 피처의 위치, 방향, 크기 및 형에 대한 기능 요구사항을 정확하게 전달하는 데 사용될 수 있는 치수, 공차, 기호, 정의, 규칙 및 규약으로 구성된다. 따라서 GD&T는 설계자가 자신의 설계 모델과 관련하여 ‘해당 모델이 의미하는 것을 말할 수 있도록’ 도와주는 정확한 언어이다. 이는 설계자의 의도를 생산 및 제품 검사 단계에 더 정확하게 전달할 수 있게 된다.  GD&T는 부품이 작동하는 방식 또는 부품이 제조된 방식을 기반으로 각 피처에 적용될 수 있다. 일반적으로 부품 기능을 기반으로 GD&T를 적용하는 것이 가장 좋은 방법이다. GD&T를 설계 모델에 적용하는 첫 번째 단계는 기준 참조를 설정하는 것이다. 설정된 첫 번째 기준 참조를 주 기준 참조라고 한다.  주 기준 참조가 설정되면 GD&T를 사용하여 기능을 기반으로 해당 기준 참조와 관련된 모델의 각 피처에 대한 형상 속성을 구속할 수 있다. 복합 부품에서는 여러 기준 참조를 설정해야 할 수도 있지만, 결국 부품에 있는 모든 피처를 주 기준 참조에 직접 또는 간접적으로 구속해야 한다. 시그메트릭스(Sigmetrix)의 GD&T 어드바이저(GD&T Advisor)는 크레오 파라메트릭과 통합되어 설계 모델에 GD&T를 적용할 때 다음과 같은 혜택을 제공하는 응용 프로그램으로, ASME Y14.5 및 ISO GPS 표준을 지원하고 있다. 생성(Creation) : 3D 모델 환경에서 기능상으로나 구문상으로 올바른 GD&T를 효율적이고 지능적으로 적용 검증(Validation) : GD&T를 시각화하고 기능을 기반으로 평가 교육(Education) : GD&T 개념을 이해하는 데 도움이 되는 광범위한 도움말 내용 및 유익한 도구 설명을 제공 재사용성(Reusability) : 드로잉 제작, 공차 분석, 컴퓨터 기반 검사 및 기타 작업과 같은 다운스트림 프로세스에서 유용한 지능적인 CAD 원시 주석을 제공 GD&T 어드바이저는 부품에 대한 피처를 정의하는 편리한 도구를 제공한다. 즉, GD&T를 해당 피처에 적용한 다음 각 피처 및 해당 피처에 대해 적용된 GD&T를 평가하여, 피처의 모든 형상 특성이 완전히 구속되는지 여부를 확인한다. 그럼 지금부터 GD&T 어드바이저의 인터페이스부터 알아보자. GD&T를 적용할 부품 또는 어셈블리 모델을 연 다음, ‘응용 프로그램’ 리본에서 ‘GD&T Advisor’ 버튼을 선택하여 시작한다. GD&T 어드바이저에 액세스하려면 GDT_ENTERPRISE 라이선스 옵션이 필요하다.     GD&T 어드바이저에 들어가면 그림과 같이 인터페이스가 변경된다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
김주현 작성일 : 2024-01-04 조회수 : 1241
총 게시글 1,862

ㆍ태그

캐드
CAE
PLM
BIM
3D프린팅
오토캐드
크리오
솔리드웍스
인벤터
autocad
맹영완
강태욱
주승환
델켐