• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
[케이스 스터디] 핵융합 실험을 위한 3D 시뮬레이션 플랫폼 개발
2025-11-04 55 0

유니티로 구현한 핵융합 디지털 트윈, V-KSTAR

 

핵융합 기술은 미래를 열어갈 수 있는 태양과 같은 에너지이지만 복잡한, 실험 데이터를 분석하고 이해하는 데 많은 시간이 소요된다. 트라이텍과 UNIST는 이러한 문제를 해결하기 위해 V-KSTAR 프로젝트를 추진했다. 이 프로젝트에서는 유니티의 디지털 트윈 기술을 활용해 직관적이고 효율적인 가상 핵융합 실험 플랫폼을 구현할 수 있었다. ■ 자료 제공 : 유니티 코리아

 

가상 핵융합 디지털 트윈 플랫폼 : V-KSTAR 프로젝트

V-KSTAR는 한국핵융합에너지연구원(KFE)의 공동 과제인 핵융합 R&D의 일환으로, 가상 핵융합 기술 개발을 위한 디지털 트윈 플랫폼 개발 프로젝트이다. 이 프로젝트는 3차원 CAD 모델 기반의 가상 핵융합 시뮬레이션을 연산하는 슈퍼컴퓨팅 기술을 활용하여 최적화된 가상 핵융합 모델 및 시뮬레이션 기술을 개발하고, 최적의 실험 결과를 도출하기 위한 가상 핵융합 시뮬레이션 통합 플랫폼 기술 개발을 목표로 한다. 핵융합 실험의 핵융합로인 토카막(Tokamak) 장치 내부에서 실시간으로 측정된 데이터의 가시화 모니터링, 시뮬레이션 데이터 분석 및 시각화, 데이터 추적 및 데이터 형상 관리 기능 등을 통해서 종합적인 파이프라인 관리 시스템을 구현하기 위한 가상 핵융합 기술 통합 플랫폼 개발 프로젝트이다.

핵융합 실험 과정에서 만들어지는 고온의 플라스마가 안정성을 가지고, 오래 유지되기 위해서는 자기력을 통해 플라스마의 모양과 위치를 고정시키는 것이 필요하다. V-KSTAR는 3차원 가상 핵융합 시뮬레이션의 반복 트레이닝을 통해 최적의 플라스마 형성 조건과 자기력 제어 기술을 확보하고, 실험을 통해서 플라스마 형상 및 장치 상태를 모니터링할 수 있는 통합 시스템 개발에 목적이 있다.

 

유니티의 시각화를 통한 핵융합 실험 장치의 개선

핵융합 실험 장치에서 실험 시 플라스마가 접촉하는 토카막 내부 타일은 플라스마로부터 열을 받아 온도가 상승하게 된다. 토카막 설비가 손상되는 것을 감지하고 정비해야 하는 문제에 대응하기 위해 각 타일의 온도를 색상과 수치로 표시하고 높은 수준으로 온도가 상승했을 경우에 경고 표시와 로그 기록을 남겨야 하는 필요성이 있었다.

 


그림 1. 토카막 내부 타일을 디지털 트윈으로 구현해낸 모습. 내부 타일의 온도를 실시간으로 색과 숫자로 확인할 수 있다.

 

핵융합 실험 장치에서 플라스마는 수억 도(℃)에 이르는 고온을 유지해야 하며, 이를 위해 고속 중성입자 빔을 플라스마에 조사하는 방법이 대표적으로 사용된다. 조사된 중성입자는 뜨거운 플라스마 내부에서 이온화되고, 플라스마와 충돌하며 에너지를 전달하고 전체 온도를 상승시킨다. 그러나 이온화된 후 충분한 에너지 전달을 하지 못한 일부 고속 이온은 플라스마 영역을 빠져나와 토카막 내벽에 충돌하게 되며, 이는 벽면 타일의 급격한 온도 상승과 손상으로 이어질 수 있다. 실제 실험에서는 이러한 손상을 막기 위해 장치 운전을 중단해야 하는 경우도 발생한다. 따라서 토카막 내부 타일의 온도를 실시간으로 색과 숫자로 표시하고, 온도가 일정 수준 이상 상승할 경우 경고를 발생시키며 로그를 기록하는 모니터링 체계가 필요하다.

나아가, 개발 팀은 물리적 트윈(physical twin)인 K-STAR 장치에서 고속 이온의 손실이 발생하는 위치를 실험 전 또는 실험 사이에 미리 파악하고, 내벽 손상을 최소화하기 위해 유니티 기반의 3차원 디지털 트윈인 ‘V-KSTAR’를 구축하였다. 이를 통해 입자 궤적을 추적하고 벽면과 고속 이온의 충돌을 시각화함으로써, 고속 입자 손실 메커니즘을 정밀하게 분석하고 장치 보호 및 실험의 안정성을 강화할 수 있게 되었다.

 

플라스마 발생 영역을 분석하기 위한 3차원 셰이더 구현

개발 팀은 유니티가 VR(가상현실), XR(확장현실)과 같은 여러 플랫폼과 호환성이 높고, 확장할 수 있는 통합 도구 제공이 잘 되어 있다는 점에 주목했다. 또한, C# 기반에서 프로젝트를 구성하기 때문에 개발 진입 장벽이 낮고 사례가 많아 개발에서 오는 리스크를 최소화할 수 있는 가능성이 많다는 점도 개발 프로젝트에 유니티를 선택하게 된 요인이 됐다.

유니티에서 플라스마는 흔히 도넛으로 알고 있는 토러스(torus, 원환면) 형태로 생성된다. 토러스를 수직으로 자른 단면의 경계를 기저로 하여 360도 회전을 통해 전체 플라스마 형상이 만들어진다. 토러스 내부는 구멍이 있고, 이 공간에 토카막 내벽이 위치하기 때문에 토러스가 내벽을 가리는 구조이다. 개발 팀은 투시가 가능하면서도 그 경계가 명확하게 시각화될 수 있도록 플라스마 셰이더를 구현했다. 또한 이중 노멀을 구현하여 카메라가 플라스마에 포함되어도 플라스마의 형상을 관찰할 수 있도록 하였다.

 


그림 2. 토러스 형태의 플라스마

 

핵융합 장치 시각화를 위해 선택한 유니티 플랫폼과 툴

개발 팀은 다양한 유니티 플러그인을 분석적 가시화에 활용했다. 예를 들어, CrossSection 플러그인을 활용하여 모델 내부 단면을 관찰할 수 있도록 하였으며, 토카막 장치를 360도로 회전시키며 원하는 각도에서 내벽과 외벽이 전체 장비와 어떻게 모양을 이루고 있는지를 한눈에 파악할 수 있는 기능을 구현했다.또한, 시간에 따른 부품별 온도 상태를 한 눈에 파악하기 위한 그래프를 그리는 데에도 Vectrosity와 같은 플러그인으로 원하는 기능을 쉽게 구현했다. 코드의 부분적인 교체와 유지 보수를 효율적으로 진행할 수 있도록 프로그램 모듈화를 진행할 때에도 유니티가 제공하는 Assembly Definition 기능을 활용해 손쉽게 프로그램을 체계적으로 모듈 단위로 분리할 수 있었다.

 

디지털 트윈 도입을 통한 핵융합 실험의 변화

V-KSTAR의 또 다른 기능은 실시간 데이터를 대용량으로 파일 포맷으로 기록하고 실제 실험이 끝나고 난 뒤 스트리밍 방식으로 실험 결과를 재현하는 것이다. 약 2~3분 단위의 실험은 샷넘버라는 고유 번호로 구분이 되고, 그 번호에 해당하는 플라스마 형상이 어떤 모양인지 확인하여 실험 설정의 최적값을 재사용할 수 있도록 돕는다. 설정 값과 그에 따른 실험 결과가 수많은 문서에 표와 숫자로 기록된 것을 연구자들이 읽고 이해해야 하는 일을 디지털 트윈이 빠르고 직관적인 방식으로 만들어 시간을 절약하는 효과가 있다.

실제 캠페인 현장에 가면 플라스마를 관찰할 수 있는 특수 카메라 영상이 흑백 모니터로 표시되고, 그 주변으로 수많은 센서 값에 대한 계기판이 벽면을 가득 채우고 있다. V-KSTAR는 한 눈에 파악하기 어려운 복잡한 수치 데이터를 가상 공간의 3D 모델에 다양한 색상으로 시각화하여, 마치 실제로 가까이서 관찰하는 것과 같은 직관적인 환경을 제공한다.

또한 플라스마 형상을 감지하는 센서 정보를 바탕으로 플라스마를 재구성하여, 특수 카메라의 제한된 시야에서는 관찰하기 어려웠던 전체적이고 동적인 모습을 제공하기 때문에 실험 결과에 대한 이해가 더욱 효율적이다. 따라서, V-KSTAR 프로젝트 도입을 통해 시뮬레이션 결과를 보다 빠른 시간에 분석하고, 연구자 간 시뮬레이션 결과를 공유하고 토론할 수 있는 가상 공간을 통해 연구의 진척도를 높일 수 있는 효과가 있다.

 

V-KSTAR 시각화 과정에서 유니티 활용의 효과

핵융합 실험의 특성 상 대규모의 그래픽 요소를 고성능을 유지하며 가시화하는 데는 일정한 한계가 있었다. 이로 인해 복잡한 데이터 시각화를 위해 일부 요소를 단순화해야 하는 경우가 발생했다. 하지만 유니티를 사용한 개발은 확실히 쉽고, 가볍고, 직관적인 면이 있다. 그래서 프로젝트 초기에 간단한 사용자 요구가 많을 때는 즉시 반영하여 해결하기에 적합했다. 개발 팀은 “핵융합 연구와 같은 전문 분야를 위한 유니티의 고성능 그래픽 설루션에 대한 자료와 사례가 더 풍부해지기를 기대한다”고 전했다.

 

V-KSTAR의 향후 기술 발전 방향

향후 프로젝트의 핵심 과제는 폭발적으로 증가하는 방대한 데이터를 기존의 렌더링 성능 수준에서 효과적으로 가시화하는 기술 개발이다. 이를 위해 컴퓨터의 그래픽 성능을 무제한에 가깝게 확장할 수 있는 하드웨어 또는 소프트웨어 측면의 방법을 발굴하여 프로젝트에 접목해야 할 것으로 보인다.

또한 개발 팀은 핵융합 실험을 위한 최적의 CAD 환경을 구현하기 위해, 설계–변환–시뮬레이션–피드백의 자동화된 워크플로를 실현할 수 있도록 V-KSTAR에 모델과 데이터의 자동 관리 시스템을 갖출 수 있도록 노력하고 있다.

개발 팀은 “향후에 진행되는 새로운 핵융합 실험 장치와 ITER 및 DEMO 장치에도 현재 개발되고 있는 플랫폼이 확장 적용될 것이며, AI를 접목하여 학습한 결과를 가시화하고 분석하는 연구가 장기적으로 진행될 것으로 예상된다”고 전했다. 또한, “AI를 도입한 V-KSTAR를 통해 핵융합 실험을 일부 대체할 수 있다면 실험 시간과 운영 비용을 절감하는데 보다 크게 기여할 것으로 기대된다. 유니티를 활용해 V-KSTAR를 원활하게 구현해냈기 때문에, 이 경험을 바탕으로 향후에도 유니티를 지속적으로 활용할 계획”이라고 덧붙였다.

 

 

■ 기사 내용은 PDF로도 제공됩니다.

정수진 sjeong@cadgraphics.co.kr


출처 : 캐드앤그래픽스 2025년 11월호

  • kakao

댓글 0

로그인 후 댓글을 달수있습니다
등록된 코멘트가 없습니다.