• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "메셔"에 대한 통합 검색 내용이 22개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
리커다인 2024 : 솔버 성능과 접촉 해석 속도 향상된 다물체 동역학 해석 소프트웨어
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통해 Static 솔버의 수렴성 향상, 접촉 해석 속도 향상, FFlex Static 신규 출시, Linked Assembly 툴킷 신규 출시, 지오메트리의 관계에 따른 메시 자동 업데이트, 부력 및 Gap Force 추가, 유연체 간 열전달 계산, Pre-Stress가 적용된 셸 요소 생성, DriveTrain 개선 등 사용 환경(OS) : 윈도우 10/11(64비트)     2023년 11월 출시된 리커다인(RecurDyn) 2024는 지난 리커다인 2023에서 2년여의 지속적인 연구 개발을 통해 N-R Static 솔버 성능과 접촉 해석 속도가 향상되었다. 이번 리커다인 2024에서도 지속적인 솔버의 연구 개발을 통해 Static 솔버의 수렴성이 개선되었으며, 접촉 성능 또한 향상되었다. 이러한 솔버 성능 개선을 통해 유연체를 포함한 MFBD(Multi Flexible Body Dynamics) 모델의 정적 해석을 수행하는 기능인 FFlex Static이 새롭게 추가되었다. 또한, 새로운 힘 요소인 부력과 Gap Force가 추가되었으며, 유연체 간 열전달을 계산할 수 있는 Thermal Contact도 새롭게 추가되었다. 그리고 일반 CAD 지오메트리를 이용하여 체인, 무한궤도, 고무트랙, 벨트, 케이블 체인과 같은 어셈블리를 손쉽게 모델링하고 해석할 수 있는 Linked Assembly 툴킷이 새롭게 추가되었다.   솔버 기능 강화 Static 솔버 개선 및 FFlex Static 리커다인 솔버는 매 버전마다 개선을 거듭하고 있다. N-R Static 솔버의 경우 최근 3년여의 연구 개발을 통해 성능이 대폭 향상되었다. 안정적이고 정확하게 정적 평형상태를 계산할 수 있으며, 강체와 RFlex 보디(Modal method)는 물론 FFlex 보디(Nodal method)가 포함된 비선형 MFBD 모델의 정적 해석 수렴성도 대폭 강화되었다.     특히, FFlex 보디가 포함된 모델의 정적 해석을 수행할 수 있는 FFlex Static이 새롭게 추가되어 유연체에 대한 구조 해석을 통해 정적 상태의 변형 및 응력 확인이 가능하며, FFlex 보디의 Self-Contact는 물론 다른 보디 간의 접촉까지 고려한 MFBD 모델의 정적 해석을 지원한다. 또한, 유연체의 변형된 형상이 필요한 경우, 정적 해석과 Extract 기능을 활용하면 손쉽게 변형된 형상을 만들 수 있다.     이를 통해, 자동차, 굴착기와 같은 모델의 초기 평형 상태를 사전에 계산함으로써, 해석 속도와 정확도를 개선하고 동적 조건을 고려하기 전 정적 해석을 이용한 사전 튜닝을 통해 전체적인 해석 시간을 절감할 수 있다. 또한, 관성의 효과가 작은 모델의 경우 준정적 해석(quasi-static analysis)을 이용하여 모델의 거동을 빠르게 확인할 수 있으며, 시스템의 가동 범위(range of motion)나 보디 간의 간섭을 정적 해석으로 예측할 수 있다.     접촉 해석의 다중 프로세서 처리 확대 다중 프로세서 처리(SMP) 지원과 알고리즘 개선을 통해 대폭 향상된 성능을 보여준 기존 Geo Surface Contact 요소에 이어, 이번 리커다인 2024에서는 Geo Sphere/Cylinder/Curve(3D, 2D)/Circle(2D) Contact 요소까지 다중 프로세스 처리를 확대 지원하게 되었다. 리커다인 2024에서 별도의 모델 수정 없이 향상된 접촉 성능이 적용된다.   ▲ SMP를 통한 접촉 해석 성능 향상   또한, 커브(curve)의 3차원 접촉 모델링에 최적화된 Geo Curve 3D와 Geo Sphere to Curve 3D가 새롭게 추가되어 빔(beam) 케이블이나 베어링과 같이 커브 혹은 서클(circle) 형상을 가지는 기계 부품의 3차원을 고려한 접촉해석을 더욱 빠르고 정확하게 수행할 수 있다.   ▲ 빔 케이블의 접촉 모델   MFBD 기능 강화 Thermal Contact 유연체의 열전도에 의한 열응력을 MFBD 해석에 실시간으로 적용할 수 있는 FFlex Thermal 기능에 Thermal Contact가 새롭게 추가되었다. Thermal Contact는 전도에 의한 두 유연체 사이의 열전달을 계산하는 기능이다. 이 기능을 통해 서로 다른 부품 간 열전도, 열팽창 및 열응력을 고려할 수 있다. 예를 들어 모터와 같이 회전자에 열에너지가 발생하고 고정자로 전달되는 경우를 Thermal Contact 기능을 이용하여 모델링하고 결과를 확인할 수 있다.   ▲ Thermal Contact를 활용한 열전도 모델   지오메트리 연결 관계를 통한 메시 자동 업데이트 리커다인 2024에서는 메셔(Mesher)에 Surface Mesh 기능을 추가하고 기능을 강화하여 기존 지오메트리 연결관계에 따른 형상 자동 업데이트 기능을 메시에도 확장 적용하였다. Surface Mesh를 통해 생성한 셸 요소를 기반으로 솔리드(solid) 요소를 생성하면 커브 형상 등의 기반이 되는 지오메트리 수정을 통해 솔리드 요소까지 자동으로 업데이트할 수 있다.     셸 요소의 Pre-Stress 리커다인 2024에서는 손쉽게 Pre-Stress가 적용된 셸 요소를 생성할 수 있게 되어 복잡한 형상의 메시에도 Pre-Stress를 적용할 수 있게 되었다. 이 기능을 통해 모델링 시간도 크게 줄일 수 있다.   ▲ Pre-Stress가 적용된 웹 핸들링 모델   Professional(MBD) 기능 강화 Buoyancy Force(부력) 부력을 계산할 수 있는 Buoyancy Force가 새롭게 추가되었다. 수면 및 유속 방향의 기준 좌표와 부력 대상이 될 보디를 선택하여 부력을 적용할 수 있으며, 강체와 유연체에 모두 적용할 수 있다. 또한, 부력 계산을 위한 다양한 유체 속성 정보를 설정할 수 있으며, 시간에 따라 유속 크기가 변화하는 것도 표현할 수 있다.   ▲ 부력을 적용한 해상 크레인 모델   CFD 연성 해석을 수행하지 않고도 부력을 적용할 수 있기 때문에, 복잡한 유동은 고려할 필요 없이 부력만 적용하면 되는 모델을 빠르게 시뮬레이션할 수 있다.   Gap Force 보디와 보디 사이에 사용자가 지정한 간격을 유지하도록 두 보디 양쪽에 힘을 가하는 Gap Force 요소가 새롭게 개발되었다. 각 보디의 위치 및 자세가 변경되어 사용자가 지정한 간격보다 커지거나 작아지면 지정된 간격을 유지하도록 Action Body에 힘이 가해진다. Gap Force를 이용하여 공력이나 자력에 의해 부품이 떠 있는 모델을 만들어 시뮬레이션할 수 있다. 예를 들어, 에어 베어링이나 마그네틱 베어링으로 부품 간의 접촉을 방지한 리니어 가이드 등을 모델링할 수 있다.   ▲ Gap Force를 이용한 리니어 가이드 모델   툴킷 기능 강화 Linked Assembly 리커다인 2024에서 새롭게 추가된 Linked Assembly는 일반 CAD 지오메트리를 이용하여 체인(Chain), 무한궤도(Caterpillar), 고무트랙(Rubber Track), 벨트(Belt), 케이블 체인(Cable Chain) 같은 어셈블리를 생성할 수 있는 모델링 자동화 및 해석 툴킷이다. 어셈블리를 생성할 때 Contact, Force와 같은 연결 관계도 자동화 기반으로 쉽게 생성할 수 있다. 이를 통해 다양한 형상 또는 더욱 정밀한 형상으로 어셈블리 시스템을 만들고 동역학 해석을 할 수 있다.     또한, Assembly Body의 특정 부분이나 Passing Body, Guide를 손쉽게 유연체로 변환하고 MFBD 해석도 수행할 수 있다.     DriveTrain 개선 DriveTrain에 내장된 KISSsoft가 최신 버전으로 업그레이드되어 향상된 KISSsoft 기능을 활용할 수 있다. 또한 선기어를 제외한 유성기어를 모델링할 수 있도록 개선되었으며, KISSsoft의 Z70(베벨 기어)과 Z80(웜 기어)의 CAD 형상을 생성할 수 있다.   ▲ 선기어를 제외한 유성기어 모델   그리고 랙&피니언(rack&pinion)에 대한 Involute Contact를 지원한다. 이를 통해 보다 빠른 접촉 해석이 가능하게 되었으며, 필요한 기어쌍의 접촉만을 계산함으로써 효율적인 해석을 수행하는 것도 가능해졌다.   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-11-02
메싱 자동화를 통한 CFD 엔지니어의 작업시간 단축
성공적인 유동 해석을 위한 케이던스의 CFD 기술 (1)   전산 유체 역학(CFD)의 메시 생성은 사용자의 전문 지식과 독창성에 의해 메시 유형, 토폴로지 및 셀 품질이 선택되며, 이것은 솔루션의 수렴 및 정확도에 영향을 미칠 수 있다. 이러한 메시 생성 작업을 자동화하기 위해서는 적절한 제어 방법이 필요하다.   ■ 자료 제공 : 나인플러스IT   메싱을 자동화할 수 있는 범위 옥스퍼드 사전에 따르면 자동의 정의는 ‘사람이 조작할 필요 없이 작동하는 컨트롤을 갖는 것’이다. 이는 NASA의 CFD 비전 2030 연구와 일치하며, 저자는 “궁극적으로 메시 생성 프로세스는 CFD 사용자에게 보이지 않아야 한다”고 말한다. 그러나 ‘자동’이라는 문자 그대로의 정의를 기술에 적용하는 것은 권장되지 않고 실현 가능하지도 않다. 어떤 경우에 자동화 방법은 메시 생성이 90% 진행된 시점에서 불가피한 장벽에 도달한다. 마지막 10%는 완료하기가 사실상 불가능하거나 며칠 또는 몇 주를 소비한다.   그림 1   피델리티 포인트와이즈(Fidelity Pointwise)는 자동화가 잘못된 방향으로 진행될 때 백업 역할을 하는 수동 제어 기술을 자동화와 결합하여 안정적인 메시 자동 생성기를 만들었다. 이번 호에서는 CAD 모델 가져오기를 시작으로 피델리티 포인트와이즈에서 자동화가 어떻게 구현되었는지 살펴보겠다.   자동화된 솔리드 모델 어셈블리 CAD의 가져오기와 기하학적 정리는 메시 생성의 골칫거리이다. 가져오기 및 기하학적 정리 과정에서 주요 문제는 인접한 표면들 사이의 간격과 겹침이다. 이러한 간격과 겹침으로 인해 메셔는 각 표면을 분리된, 떨어져 있는 조각으로 인식하게 되며 전체 기하학의 일부로 보지 못한다.(그림 2) 만약 부주의하게 구성된 CAD를 메싱한다면 구성 메시들이 표면 경계를 통해 일치하지 않을 가능성이 있다.   그림 2. 이 발사체는 IGES 파일에서 가져왔다. 색상은 서로 관계가 없는 개별 표면을 나타낸다.(위) 전체 발사체 지오메트리는 단일 위상 솔리드 모델로 가져오는 동안 자동으로 조립되었다.(아래)   피델리티 포인트와이즈는 CAD 파일을 가져올 때 자동으로 CAD 파일의 표면을 하나의 토폴로지 솔리드(그림 2)로 조립한다. 이 결과로 생성된 솔리드 모델은 간격도 없고 겹침도 없다. 솔리드 모델을 메싱하는 중요한 점은 모델을 메싱할 때 모든 구성 메시(각각 하나의 CAD 표면에 대응하는 메시)가 원활하게 연결되고 기하학적 의도를 준수하며 표면 메시들이 즉시 부피 메싱에 적합하도록 한다는 것이다. 반면, 솔리드 모델 조립이 가져오기 과정에서 완전하게 작동하지 않을 때 포인트와이즈는 사용자가 허용 오차와 조립할 표면을 제어하면서 수동으로 조립 작업을 수행할 수 있도록 해 준다.   ■ 기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2023-08-31
피델리티 CFD : 터보 기계 해석을 위한 CFD 소프트웨어 패키지
개발 및 공급 : Cadence Design Systems 주요 특징 : 터보 기계의 CFD 해석을 위한 기능 제공, 기본 CFD 기술부터 High-Order 솔루션까지 사용 가능, 단일 해석 환경 및 워크플로 제공, 파이썬 스크립트를 통한 자동화, 다양한 상용 코드와 호환성 지원 등 자료 제공 : 나인플러스IT     피델리티 CFD(Fidelity CFD)는 케이던스(Cadence)의 CFD 소프트웨어로 고난도 수치 알고리즘, SRS, HPC를 통해 CFD(전산유체역학) 기술의 도약을 준비하고 있다. 통합된 CFD 플랫폼을 통해 기본적인 CFD 기술부터 High-Order 솔루션까지 간편하게 사용할 수 있으며 터보 기계(Turbomachinery)를 위한 CFD 프로젝트 수행에 특장점을 갖고 있다.     피델리티 CFD 소프트웨어는 사용자의 프로젝트 작업 환경과 요구 조건에 적합한 솔루션을 간편하게 선택하여 응용할 수 있다. 피델리티 CFD의 가장 큰 장점은 작업 속도를 단축시키면서도 정확도를 놓치지 않고, 반대로 정확도를 높이면서도 작업 시간이 늘어나지 않는다는 것이다.   피델리티 CFD의 주요 특징 모든 유형의 유체 해석 + 회전식 터보 기계 해석 메셔/솔버를 위한 기본 코어 제공(최대 32코어) 단일 환경 및 워크플로(Preliminary Design - Pre - Solving - Post) 파이썬 스크립트를 통한 자동화 기능 Compressor 및 Turbine Map의 Speed line 자동 계산 타사의 상용 코드와 매끄러운 호환성   피델리티 애자일 - Preliminary & Detailed 1D, 3D Design 케이던스는 터보 기계를 위한 콘셉트 디자인 솔루션 기업인 Concepts NREC와 오랜 기간 파트너십을 형성하고 있다. System/Cycle design, Preliminary sizing, Fluid dynamics, Mechanical stress/vibration analysis까지 단일한 피델리티 플랫폼 안에서 피델리티 애자일(Fidelity Agile)을 사용하여 콘셉트 디자인 작업부터 시작되는 CFD의 모든 작업을 할 수 있다.     피델리티 오토메시 - 전처리 피델리티 오토메시(Fidelity AutoMesh)를 통해 어떠한 형태의 지오메트리도 직관적인 방식으로 고품질의 격자 생성이 가능하다. 터보 기계의 Structured Meshing부터 복잡한 Unstructured Grid Generation까지 활용 범위가 넓다. 격자 생성 시간을 최소화하면서도 그리드(grid)의 품질을 보장해주는데 강점이 있으며, 피델리티 오토메시를 통해 생성된 Structured 및 Unstructured 각각의 격자를 자연스럽게 혼용 가능하다. 또한 피델리티 오토메시를 통해 생성된 격자는 모든 주요 CFD 플랫폼에서 사용 가능하며, 다양한 임포트&익스포트 포맷을 지원해 CFD 솔버 및 CAD 시스템에 매끄럽게 호환된다.     피델리티 플로 - 솔빙&후처리 피델리티 플로(Fidelity Flow)는 복잡한 형상의 내/외부 유체 유동(flow) 해석을 위한 멀티피직스 전용 CFD 유동 통합 모듈이다. 모든 유형의 유동(압축/비압축성, 이상 가스 또는 실제 가스 등)을 해석할 수 있으며 열 전달, 연소, 다상, 캐비테이션, 복사, 화학 반응 등의 멀티피직스 해석이 가능하다.     특히 피델리티 터보 라이브러리(Fidelity Turbo library)는 터보 기계와 같이 회전을 사용하는 기계의 해석을 위한 터보 기계 전용 라이브러리이며, 터보 솔버(Turbo Solver)는 모든 시장에서 빠르고 정확한 결과를 배출하는 솔버로 풍력 터빈, 터보 차저, 항공 엔진, 유압 터빈 등의 회전 기계 분야를 위해 설계되었다. 터보 기계 설계의 시작부터 해석, 사후 처리까지 하나의 환경에서 구동할 수 있다.     ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2023-08-02
리커다인 2023 : 솔버 개선 및 다물체 동역학 해석 기능 강화
개발 및 공급 : 펑션베이 주요 특징 : 지속적인 솔버 개발을 통해 Static 솔버 성능과 접촉 해석 속도가 대폭 향상, 지오메트리의 관계에 따른 형상 업데이트, 모델의 단위계 변환, 개선된 해석 결과 녹화 기능, 모델 단위계 변환 기능, 리커다인의 유연체와 파티클웍스의 유체 입자 간 양방향 열전달 해석 지원, 기본 형상에 대하여 최적의 메시를 생성하는 기능, 드라이브트레인 개선 등 사용 환경(OS) : 64비트 윈도우 8/10   새롭게 출시되는 RecurDyn 2023(리커다인 2023) 버전에서는 2년여의 지속적인 연구 개발을 통해 N-R Static 솔버 성능과 접촉 해석 속도가 대폭 향상되었다. 또한, DOE나 최적화에 활용할 수 있도록 지오메트리(geometry)의 계층 관계에 따른 형상 업데이트 기능이 추가되었다. 이 외에도 RecurDyn의 유연체와 Particleworks(파티클웍스)의 유체 입자 간 양방향 열전달 해석이 가능하게 되었으며, 기본 형상에 대한 최적의 메시(mesh)를 생성해 주는 Primitive Auto Mesh(프리미티브 오토 메시)가 추가되었다. 그 밖에 Endless Simulation 기능이 추가되고 DriveTrain(드라이브트레인) 툴킷의 개선과 해석 결과 녹화 기능의 개선이 이루어졌다.   솔버 기능 강화 Static Solver 개선 및 FFlex Static RecurDyn 솔버는 매 버전마다 지속적으로 개발되어 개선을 거듭하고 있다. N-R Static 솔버의 경우 2년여의 연구 개발을 통해 성능이 대폭 향상되었다. 이전에 비해 훨씬 안정적이고 정확하게 정적 평형상태를 계산할 수 있으며, 강체와 RFlex 보디(Modal method)는 물론 FFlex 보디(Nodal method)가 포함된 비선형 MFBD 모델의 정적 해석도 지원한다.   그림 1. 접촉을 수반한 MFBD 모델의 정적 평형 상태를 빠르고 정확하게 계산   특히, FFlex 보디가 포함된 모델의 정적 해석을 수행할 수 있는 FFlex Static의 경우, 유연체에 대한 구조 해석을 통해 정적 상태의 변형 및 응력 확인이 가능하며, FFlex 보디의 Self Contact는 물론 다른 보디 간의 접촉까지 고려한 MFBD 모델의 정적 해석을 지원한다. 또한 유연체의 변형된 형상이 필요한 경우, 정적 해석과 Extract 기능을 활용하면 손쉽게 변형된 형상을 만들 수 있다.   그림 2. 팽팽하게 당긴 상태 계산   그림 3. 트랙링크의 정적 해석   그림 4. 섀시 구조 해석   그림 5. 초기 평형상태 계산   이를 통해 자동차, 굴착기와 같은 모델의 초기 평형 상태를 사전에 계산함으로써 해석 속도와 정확도를 개선하고, 동적 조건을 고려하기 전 정적 해석을 이용한 사전 튜닝을 통해 전체적인 해석 시간을 줄일 수 있다. 또한, 관성의 효과가 작은 모델의 경우 준정적 해석(quasi-static analysis)을 이용하여 모델의 거동을 빠르게 확인할 수 있으며, 시스템의 가동 범위(range of motion)나 보디 간의 간섭을 정적 해석으로 예측할 수 있다.   그림 6. Quasi-static을 이용한 로봇 거동 확인   접촉 해석의 다중 프로세서 처리 지원 RecurDyn에서 접촉을 해석할 수 있는 Geo Surface Contact 요소의 알고리즘 개선 및 다중 프로세서 처리(SMP) 지원을 통해 접촉 성능이 약 50% 개선되었다. 이에 따라 Geo Surface Contact가 많이 사용된 시스템의 경우 해석 시간이 최대 40~50% 단축된다. RecurDyn 2023에서 별도의 모델 수정 없이 향상된 접촉 알고리즘이 적용된다.   그림 7   RecurDyn의 동역학 모델에서는 접촉이 사용되는 것이 일반적이기 때문에 대부분의 모델의 해석 속도가 개선된다. 또한 강체는 물론 FFlex, RFlex와 같은 유연체가 포함된 MFBD 모델에서도 향상된 접촉 성능을 경험할 수 있다.   그림 8. Clutch 모델 접촉 성능 31% 개선   그림 9. Web Handling 모델 접촉 성능 33% 개선   이러한 접촉 성능 개선은 연속적으로 일정한 접촉력이 발생할 때, 혹은 접촉 요소가 많고 지속적으로 접촉이 발생할 때, FFlex 계산량보다 접촉 계산량이 많을 때 더욱 유용하게 작용한다.   MFBD 기능 강화 FFlex Thermal과 Particleworks의 양방향 열유체 연성해석 RecurDyn의 유연체와 Particleworks의 유체 입자 간의 양방향 열전달 해석을 지원한다. Particleworks에서 계산한 HTC(Heat Transfer Coefficient) 및 유체의 온도 정보를 설정된 시간 스텝에 따라 RecurDyn의 유연체의 온도 정보와 교환하며, 각 온도 조건을 유체 및 고체의 열전달 해석의 경계조건으로 사용한다. 두 소프트웨어는 전용 인터페이스를 통해 완전히 양방향으로 정보를 주고받는다.   그림 10   이 기능을 활용하여 유체에 의한 FFlex 보디의 냉각 및 가열 상태, 그에 따른 구조체의 팽창 및 수축을 예측할 수 있다. 또한, FFlex Thermal 개선으로 노드(node)의 온도를 확인할 수 있는 Expression 함수가 추가되어, 노드의 시간에 따른 온도 변화를 확인할 수 있다.   메셔(mesher) 개선 Sphere, Box, Cone 형상에 대한 최적의 메시를 생성해 주는 Primitive Auto Mesh 기능이 새롭게 추가되었다. RecurDyn에서 생성한 Sphere, Box, Cone 지오메트리를 지정할 수 있으며, 형상에 맞는 고품질 메시를 생성할 수 있다.   그림 11   Professional(MBD) 기능 강화 지오메트리의 계층 관계에 따른 형상 업데이트 RecurDyn에서 지오메트리를 생성할 때 Curve → Surface → Solid 순서로 작업을 진행할 수 있다. 이때 계층 구조(hierarchy)가 적용되는 지오메트리의 경우, 상위 지오메트리를 수정하면 하위 지오메트리도 그에 따라 업데이트되도록 개선되었다.   그림 12   Curve의 형상을 수정하면 서피스(surface) 혹은 솔리드(solid)까지 업데이트되기 때문에, RecurDyn에서 보다 다양한 형상을 사용자가 모델링하고 손쉽게 수정할 수 있다. 이를 활용하여 DOE, AutoDesign 등을 통한 형상 최적화도 수행할 수 있다.   시뮬레이션 모델의 단위계 변환 RecurDyn 2023부터는 모델 생성 후에도 모델의 유닛(unit)을 변경할 수 있게 되었다. 새롭게 추가된 Change Model Units 기능을 통해 RecurDyn 모델의 Force, Mass, Length, Time에 대한 유닛을 자유롭게 변경할 수 있다. 또한 사용자 정의 유닛을 직접 생성하여 사용할 수도 있다. 이를 통해 언제든지 필요에 따라 모델 단위계를 변경할 수 있어, 서로 다른 나라의 엔지니어와 기술적 대응이나 교류를 할 때 해당 나라에 맞는 단위계로 손쉽게 변경하여 작업 및 결과 학인을 할 수 있다.   그림 13   Endless Simulation RecurDyn에서 해석을 수행할 때 Simulation End Time의 지정 여부를 결정할 수 있게 되었다. End Time 비활성화 시, End Time을 별도로 지정하지 않고 사용자가 Stop을 누를 때까지 시뮬레이션이 계속 진행된다. 이 기능을 Stop Condition 기능과 함께 사용하면 특정 조건을 만족할 때까지 시뮬레이션이 종료되지 않도록 할 수 있다.   해석 결과 녹화 기능 개선 기존의 해석 결과 녹화 기능이 개선되었다. 녹화 영역을 사용자가 직접 선택하거나 전체 화면으로 설정할 수 있게 되어, 다양한 결과 그래프가 포함된 애니메이션을 녹화할 수 있다.   그림 14   툴킷 기능 강화 DriveTrain 개선 GearTrain의 생성 방법이 개선되어 2개의 선기어와 1개의 캐리어가 사용되는 라비뇨식 기어를 생성할 수 있다. 또한, Rack&Pinion의 생성 및 시뮬레이션 지원하여 KISSsoft Z13 파일로 가져오기 및 저장이 가능하다. 이렇게 생성한 Rack&Pinion도 다른 기어와 마찬가지로 KISSsoft를 이용한 접촉 계산, 기어 메타 모델을 이용한 계산을 지원한다.   그림 15   그리고 Contact Pressure, SV(Sliding Velocity), PV(Pressure Velocity)를 RecurDyn 컨투어를 통해 확인할 수 있게 개선되어, 시간에 따른 변화를 직관적으로 파악할 수 있게 되었다.   그림 16   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2022-11-01
앤시스 2021 R2 : 엔지니어링 탐색·협업 및 자동화 향상
개발 및 공급 : 앤시스코리아 주요 특징 : 개방형 엔지니어링 플랫폼에 적용된 신기술로 속도와 단순성 향상, 지속적으로 증가하는 컴퓨팅 성능 활용, 산업 전반에 걸쳐 제품과 어셈블리 및 시스템 최적화, 여러 엔지니어링 툴과 필드가 통합된 시스템 엔지니어링 워크플로 제공, 하위 시스템과의 상호 작용과 시너지 이해 및 더 나은 제품의 더 빠른 출시 지원, 소재 정보·디지털 트윈 컴포넌트·전자부품 및 규정 준수 이니셔티브에 대한 데이터 가시성과 재사용성 제고   앤시스(Ansys)가 나노미터 규모의 칩 설계부터 항공 우주 및 방위 운영 환경 조정에 이르기까지 초기 단계의 제품 설계와 복잡한 시스템 엔지니어링 모두를 탐색할 수 있는 시뮬레이션 솔루션 Ansys 2021 R2(앤시스 2021 R2)를 선보였다. Ansys 2021 R2는 클라우드를 통해 간소화된 워크플로, 통합 데이터 관리 및 고성능 컴퓨팅(HPC) 파워에 대한 손쉬운 액세스를 통해 엔지니어링을 간소화하는 개방형 환경을 제공한다. 시뮬레이션을 통한 엔지니어링 탐색을 이용하면 엔지니어는 많은 비용과 시간이 소요되는 프로토타입(시제품) - 테스트 - 재설계 사이클에게 더 이상 얽매이지 않아도 된다. 새로운 설계 아이디어를 몇 주가 아닌 몇 시간 만에 가상으로 평가할 수 있으므로, 최고의 설계 후보를 최적화하거나 시장을 재정의하는 획기적인 아이디어 개발이 가능해진다. 또한 앤시스 클라우드(Ansys Cloud)를 통해 하드웨어의 제약 없이 거의 무제한에 가까운 컴퓨팅 액세스가 가능하다. 이를 통해 엔지니어는 보다 빠르고 유연하게 여러 케이스를 테스트해 볼 수 있으며, 경량 소재와 전기를 통해 자율주행 차량, 칩 설계, 미션 크리티컬 연결 솔루션 등 보다 지속 가능한 기술 개발을 지원한다.   그림 1. Ansys Mechanical은 멀티스테이지 해석 기능을 통해 소요 시간을 줄인다.   시뮬레이션 속도 향상 최신 앤시스 제품 전반에 걸쳐 속도 향상이 이루어진 것이 Ansys 2021 R2의 주요 특징 중 하나이다. 생산성이 향상되어 엔지니어는 광학 시뮬레이션 메싱을 최대 20배, 로컬 메싱을 최대 100배 더 빠르게 수행할 수 있게 됐다. Ansys Mechanical 2021 R2(앤시스 메커니컬 2021 R2)는 새로운 다단계 순환 대칭 기능을 사용하여 순환 모달 및 구조 해석을 간소화함으로써, 전체 360도 해석에 비해 실행 시간을 최대 50배까지 단축할 수 있다.  반도체 분야에 있어 2021 R2는 3nm 지원 APA(Advanced Power Analytics)를 제공하며, 공격자 식별, 가정 분석 및 엔지니어링 변경 주문(ECO : Engineering Change Order) 도구와의 연결을 통해 전압 강하 고정 효율성을 3배 향상시킨다. 더불어, 반도체 시뮬레이션에 클라우드를 사용하면 Ansys 2021 R2를 통해 비용과 코어 시간 효율성을 4배 이상 개선할 수 있다. 유동 해석에 있어서도 고속 흐름의 속도를 최대 5배 증가시켜 마하 30 이상으로 높일 수 있으며, 밀도 기반 용해제의 반응 선원 처리 성능도 향상됐다. 그리고 Ansys 2021 R2 전체에 걸쳐 간소화되고 주문이 적은 워크플로를 선보여, 제품 설계 및 개발 문제에 대한 빠른 답변을 제공하고 엔지니어는 최고의 설계 후보에 컴퓨팅 성능을 집중할 수 있다.  새로운 파이 플러스 메셔(Phi Plus Mesher)는 본드 와이어 패키지 전자기 및 신호 무결성 분석을 위한 초기 메싱을 평균 6-10배 가속화하여 3D 집적 회로 패키지 과제를 해결할 수 있다.   그림 2. Ansys HFSS에서 Phi Plus Mesher를 사용한 본드와이어 시뮬레이션   툴셋 통합 및 개방형 플랫폼 제공 Ansys 2021 R2는 시뮬레이션 속도를 직접적으로 높일 뿐 아니라, 여러 툴셋을 통합하는 개방형 플랫폼을 통해 엔지니어가 보다 효율적으로 작업할 수 있도록 지원한다. 예를 들어 Ansys Mechanical 사용자는 파이썬 프로그래밍 언어 스크립트를 자신의 모델에 직접 포함시켜 업계 표준 오픈 소스 코딩을 사용하여 플로를 자동화할 수 있다.   자동화 및 협업 향상 Ansys 2021 R2는 초기 설계, 시뮬레이션, 시스템 통합 및 제조를 연결하는 생태계 내에서 효율적으로 작업할 수 있게 하기 위해 자동화와 협업에 특히 주력했다.  새로운 릴리즈에서는 사용자가 시뮬레이션 활용 범위를 넓힐 수 있도록 클릭 한 번으로 자동 통합되는 기능이 포함되어 있다. 또한 제품 및 프로세스 통합을 통해 애플리케이션 간에 데이터를 원활하게 전송하여 사용 편의성과 생산성을 높이는 것도 가능하다. 예를 들어, Ansys 2021 R2는 최신 전자 장치에서 IC-on-Package 및 Multi-Zone PCB를 위한 자동화와 함께 새로운 CPS(Chip-Package System) 및 PCB(인쇄 회로판)의 향상된 워크플로를 제공한다.   그림 3. Ansys RedHawk-SC Electrothermal은 다양한 온도에서 복수 칩(Multi-die) IC 패키지의 온도 분포 및 구조적 뒤틀림을 확인할 수 있다.   데이터의 가시성 및 재사용 대시보드 및 전용 라이브러리를 통한 데이터 가시성 및 재사용은 Ansys 2021 R2를 사용하는 엔지니어의 효율성을 더욱 향상시킨다. 디지털 트윈 컴포넌트, 전자 부품 및 재료에 대한 라이브러리를 통해 엔지니어는 신뢰할 수 있는 데이터에 빠르게 액세스할 수 있게 됐다. 예를 들어, 소재 정보 관리 솔루션을 통해 제한 물질을 사용하는 경우 최신 공급업체 데이터 시트(SDS : Supplier Data Sheets)에 액세스하여 제품이 글로벌 규정을 준수하는지 확인할 수 있다. 이처럼 업데이트된 많은 제품에서 규정 준수와 인증 및 표준 문제를 해결할 수 있음은 물론이고, Ansys 2021 R2는 DO-178C, ISO 26262, IEC 61508 및 EN 50128 표준의 최고 안전 무결성/보증 수준을 포함하여 모든 산업 분야에서 임베디드 소프트웨어 인증을 원스톱으로 처리한다.     기사 내용은 PDF로도 제공됩니다.
작성일 : 2021-09-01
엔지니어링 탐색∙협업 및 자동화 향상된 앤시스 2021 R2 출시
앤시스가 나노미터 규모의 칩 설계부터 항공 우주 및 방위 운영 환경 조정에 이르기까지 초기 단계의 제품 설계와 복잡한 시스템 엔지니어링 모두를 탐색할 수 있는 앤시스 2021 R2(Ansys 2021 R2)를 선보였다. 앤시스 2021 R2는 클라우드를 통해 간소화된 워크플로, 통합 데이터 관리 및 고성능 컴퓨팅(HPC) 파워에 대한 손쉬운 액세스를 통해 엔지니어링을 간소화하는 개방형 환경을 제공한다. 시뮬레이션을 통한 엔지니어링 탐색을 이용하면 엔지니어는 많은 비용과 시간이 소요되는 프로토타입(시제품)-테스트-재설계 사이클에게 더 이상 얽매이지 않아도 된다. 새로운 설계 아이디어를 몇 주가 아닌 몇 시간 만에 가상으로 평가할 수 있으므로, 최고의 설계 후보를 최적화하거나 시장을 재정의하는 획기적인 아이디어 개발이 가능해진다.  또한 앤시스 클라우드(Ansys Cloud)를 통해 하드웨어의 제약 없이 거의 무제한에 가까운 컴퓨팅 액세스가 가능하므로, 앤시스 2021 R2 제품을 사용하는 엔지니어는 보다 빠르고 유연하게 여러 케이스를 테스트해 볼 수 있으며, 경량 소재와 전기를 통해 자율주행 차량, 칩 설계, 미션 크리티컬 연결 솔루션 등 보다 지속 가능한 기술 개발을 지원한다. 앤시스 2021 R2에서는 최신 앤시스 제품 전반에 걸쳐 속도 향상이 이루어졌다. 생산성이 향상되어 엔지니어는 광학 시뮬레이션 메싱을 최대 20배, 로컬 메싱을 최대 100배 더 빠르게 수행할 수 있게 됐다.     앤시스 메커니컬 2021 R2(Ansys Mechanical 2021 R2)는 새로운 다단계 순환 대칭 기능을 사용하여 순환 모달 및 구조 해석을 간소화하며, 전체 360도 해석에 비해 실행 시간을 최대 50배까지 단축할 수 있다. 반도체 분야에서는 2021 R2는 3nm 지원 APA(Advanced Power Analytics)를 제공하며, 공격자 식별, 가정 분석 및 엔지니어링 변경 주문(ECO : Engineering Change Order) 도구와의 연결을 통해 전압 강하 고정 효율성을 3배 향상시킨다. 더불어, 반도체 시뮬레이션에 클라우드를 사용하면 앤시스 2021 R2를 통해 비용과 코어 시간 효율성을 4배 이상 개선할 수 있다. 유동 해석에 있어서도 고속 흐름의 속도를 최대 5배 증가시켜 마하 30 이상으로 높일 수 있으며, 밀도 기반 용해제의 반응 선원 처리 성능도 향상됐다. 그리고 앤시스 2021 R2 전체에 걸쳐 간소화되고 주문이 적은 워크플로를 선보여, 제품 설계 및 개발 문제에 대한 빠른 답변을 제공하고 엔지니어는 최고의 설계 후보에 컴퓨팅 성능을 집중할 수 있다. 새로운 Phi Plus 메셔(Phi Plus Mesher)는 본드 와이어 패키지 전자기 및 신호 무결성 분석을 위한 초기 메싱을 평균 6~10배 가속화하여 3D 집적 회로 패키지 과제를 해결할 수 있다. 또한 앤시스 2021 R2는 시뮬레이션 속도를 직접적으로 높일 뿐 아니라, 여러 툴셋을 통합하는 개방형 플랫폼을 통해 엔지니어가 보다 효율적으로 작업할 수 있도록 지원한다. 예를 들어 앤시스 메커니컬 사용자는 파이썬 프로그래밍 언어 스크립트를 자신의 모델에 직접 포함시켜 업계 표준 오픈 소스 코딩을 사용하여 플로를 자동화할 수 있다. 한편, 앤시스 2021 R2는 초기 설계, 시뮬레이션, 시스템 통합 및 제조를 연결하는 생태계 내에서 효율적으로 작업할 수 있게 하기 위해 자동화와 협업에 주력했다. 새로운 릴리즈에서는 사용자가 시뮬레이션 활용 범위를 넓힐 수 있도록 클릭 한 번으로 자동 통합되는 기능이 포함되어 있다. 또한 제품 및 프로세스 통합을 통해 애플리케이션 간에 데이터를 원활하게 전송하여 사용 편의성과 생산성을 높이는 것도 가능하다. 대시보드 및 전용 라이브러리를 통한 데이터 가시성 및 재사용은 앤시스 2021 R2를 사용하는 엔지니어의 효율성을 더욱 향상시킨다. 디지털 트윈 컴포넌트, 전자 부품 및 재료에 대한 라이브러리를 통해 엔지니어는 신뢰할 수 있는 데이터에 빠르게 액세스할 수 있게 됐다. 예를 들어, 소재 정보 관리 솔루션을 통해 제한 물질을 사용하는 경우 최신 공급업체 데이터 시트(SDS : Supplier Data Sheets)에 액세스하여 제품이 글로벌 규정을 준수하는지 확인할 수 있다. 앤시스의 셰인 엠스윌러(Shane Emswiler) 제품 담당 부사장은 “시뮬레이션은 고급 다중 물리 설계 문제를 해결하는 것만이 아니라 고객의 성공을 지원하는 데 필요한 전 제품의 워크플로와 기능 모두를 고려해야 한다”고 강조하며, “앤시스는 자동차에서 산업, 항공 우주 및 첨단 전자 제품에 이르기까지 고객이 성공을 위해 제품과 시스템을 구축할 수 있도록 지원하는 미션 크리티컬 통합 솔루션의 선도 기업으로서 앞으로도 고객을 만족시키기 위해 최선을 다할 것”이라고 말했다.
작성일 : 2021-07-26
리커다인 V9R4: 유연 다물체 동역학 해석 향상 및 열응력 계산 추가
개발 및 공급: 펑션베이 주요 특징: 열전달 해석을 통해 열하중을 반영한 유연 다물체 동역학 해석, 전처리, 후처리 관련 편의성 강화, 메셔 기능 개선과 빔 요소의 Pre-Stress 추가 기능, 유연체 웹 기어 해석, 독립 실행 가능한 후처리 전용 툴 추가 등 사용 환경(OS): 64비트 윈도우 8/10   그림 1. 리커다인 V9R4   2020년 11월, 리커다인(RecurDyn)의 새로운 버전 V9R4가 출시된다. 이번 버전에서는 유연 다물체 동역학 관련 기능이 개선되었으며, 열전달 해석을 통한 열응력 계산 기능이 추가되었다. 또한, 모델링 편의성 및 CAD 기능, 툴킷(toolkit) 관련 기능도 개선되었으며 특히, 기어 웹(web)을 손쉽게 유연체로 적용할 수 있는 기능이 추가되었다.   열전달 해석을 통한 열응력 계산 열전달 해석을 통해 유연체에 열하중을 적용하여 열응력 및 열변형을 유연 다물체 동역학 해석에서 고려할 수 있다.   그림 2. 열전달을 고려한 바이메탈 온도계 예제   RecurDyn/FFlex에 새롭게 추가된 열전달 해석 관련 기능을 통해 열속, 대류, 발열 등의 온도 경계조건을 쉽게 설정하여 열전달 해석을 수행하고, 이를 통해 열하중을 포함한 유연 다물체 동역학 해석을 수행할 수 있다. 또한 열전달 해석을 통해 얻은 온도장 결과를 CSV 포맷으로 저장하고 이를 열하중으로 활용할 수도 있다.   그림 3. 열전달 해석 관련 기능   모델링 편의성 강화 전처리, 후처리 관련 그래픽 개선 모델링 작업이 이루어지는 작업 창(working window)에서 선택된 보디를 강조할 때 사용되는 선 굵기를 작업자의 편의에 맞게 조절할 수 있다. 또한, 보디의 센터 마커(center marker)를 시각적으로 구분하기 쉽도록 질량 중심을 표시하는 아이콘이 표시되며, 보디를 선택했을 때 마커(marker)가 하이라이트된다.   그림 4. 전처리 작업 관련 그래픽 개선   후처리 작업 관련 개선 사항으로는 힘(force) 벡터를 표시할 때, 크기에 대한 값을 시각적으로 확인할 수 있는 기능이 추가되었다.   그림 5. Force 벡터의 크기를 시각적으로 표시   또한, 접촉에 대한 힘 벡터를 표시할 때, 접촉력에 다양한 성분을 선택해서 확인할 수 있다.(X, Y, Z 성분의 벡터 및 수직 항력과 마찰력)   그림 6. 접촉력에 대한 다양한 힘 벡터 성분 확인   CAD 기능 개선 동일한 지오메트리(geometry)를 일정한 간격으로 일괄 생성할 수 있는 패턴(Pattern) 기능과 해석에 불필요한 구멍을 메꿔주는 구멍 메꾸기(Fill Holes), 지오메트리의 크기를 손쉽게 조절할 수 있는 스케일(Scale) 기능이 추가되었다. Translation Pattern, Rotation Pattern 기능을 활용하여 병진방향 혹은 회전방향으로 일정한 패턴의 보디 혹은 지오메트리의 복사본을 생성할 수 있다. 또한, 스케일 기능을 통해 X, Y, Z 방향에 대한 비율을 입력하여 지오메트리의 크기를 조절할 수 있다.   그림 7. 패턴 기능과 스케일 기능의 활용   구멍 메우기는 해석에 영향을 주지 않는 구멍(hole)을 메꿀 수 있다. 구멍을 평평하게 메꿀 수도 있고, 스무스(Smooth) 옵션을 통해 주변 곡률을 반영하여 연속적인 면으로 자연스럽게 구멍을 메꿀 수도 있다.   그림 8. 구멍 메꾸기 기능의 활용   MFBD 기능 강화 빔 요소의 Pre-Stress 추가 기능 FFlex 빔(beam) 요소를 메시(mesh)하거나 임포트(import)할 때, 초기 상태의 빔 요소에 Pre-Stress를 쉽게 적용할 수 있도록 개선되었다. 기존에는 Extract를 활용해야 했으나, V9R4에서는 빔 요소에 대하여 옵션 체크만으로 Pre-Stress를 손쉽게 생성할 수 있어 모델링 편의성이 대폭 향상되었으며, 모델링 시간 또한 대폭 줄일 수 있다.   그림 9. 오토 플렉스 머지   메셔 기능 개선 메셔(mesher)의 다양한 기능이 개선되었다. 서로 접해 있는 여러 지오메트리에 대한 연속적인 메시 작업을 진행할 때, 임프린트(Imprint)와 머지(Merge)를 자동으로 적용해주는 오토 플렉스 머지(Auto Flex Merge) 기능이 추가되었다. 또한, 새롭게 추가된 추가 메시 옵션(Additional Mesh Option)을 통해 더욱 향상된 품질의 메시 결과를 얻을 수 있다.   향상된 Eigen Solver RecurDyn/RFlex를 통해 유연체의 모드 형상을 이용하여 유연 다물체 동역학 해석을 빠르게 수행할 수 있다. 이때 사용되는 모드 정보 파일인 RFI 파일을 개선된 Eigen Solver를 통해 이전 버전 대비 최대 3배 이상 향상된 속도로 생성할 수 있다.   그림 10. 향상된 Eigen Solver   툴킷 기능 강화 Flexible Web Gear 유연체 웹(web)을 포함하는 기어를 쉽게 생성할 수 있는 기능이 추가되었다. 기어 툴킷(Gear Toolkit)에 새롭게 추가된 Flexible Gear Group의 기능을 활용하여 기어의 웹을 쉽게 생성하고, 이를 유연체로 변환할 수 있다. 기어 툴킷의 Involute A naly tic Contact를 활용하여 웹의 형상에 따른 기어의 접촉 거동이나 웹의 변형, 응력 분포 등을 분석할 수 있다.   그림 11. Flexible Web Gear   이를 통해, 웹의 형상이 기어의 동적 특성 등과 같이 기어 시스템에 어떠한 영향을 미치는지 분석할 수 있다.   그림 12. 웹의 유연체 변환 과정   RecurDyn Post 독립적으로 실행 가능한 리커다인 포스트(RecurDyn Post)가 새롭게 추가되었다. 리커다인 플롯(RecurDyn Plot)과 달리, 리커다인 포스트는 독립적으로 실행되기에 리커다인과 동시에 띄워 놓고 사용하기에 좋다. 특히 2개 이상의 모니터를 사용할 때 편리하다. 여러 항목을 다중 선택하여 여러 개의 그래프를 한 번에 그릴 수 있으며, 대용량 결과 파일에 대해서도 빠른 처리속도를 보인다. 또한, 그래프를 그리기 전 미리 확인할 수 있는 미리보기, 데이터 비교, C# 스크립트를 이용한 커스터마이즈, 데이터 수정 등 다양한 편의 기능을 제공한다.   그림 13. 리커다인 포스트   접촉 포인트 개선 벨트 툴킷(Belt Toolkit)에서 풀리(pulley)와 벨트(belt) 사이, 그리고 MTT2D/3D 툴킷에서 롤러(roller), 가이드(guide)와 시트(sheet) 사이의 접촉 포인트(contact point) 정보를 확인할 수 있다.   그림 14. 롤러와 시트 간 접촉 포인트   그림 15. 벨트와 풀리 간 접촉 포인트   파티클웍스 인터페이스의 결과 익스포트 파티클웍스 인터페이스(Particleworks Interface) 사용 시, 파티클(particle)과 벽(wall)의 결과를 CSV 포맷으로 익스포트(export)할 수 있는 기능이 추가되었다. 이를 통해 컨투어(contour)로 확인하던 다양한 결과를 텍스트 파일로 익스포트하여 활용할 수 있다.   그림 16. 파티클과 벽의 결과 익스포트     기사 내용은 PDF로도 제공됩니다.
작성일 : 2020-09-29
지멘스, 심센터 STAR-CCM+에 메셔와 솔버 등 기능 향상과 VR 협업 추가
지멘스 디지털 인더스트리 소프트웨어는 심센터(Simcenter) STAR-CCM+ 소프트웨어의 최신 버전을 출시했다고 발표했다.  심센터 STAR-CCM+는 심센터의 시뮬레이션 및 테스트 솔루션 포트폴리오의 일부로, 고객이 설계를 최적화하고 향상된 속도와 신뢰도를 바탕으로 혁신할 수 있도록 지원한다. 심센터 STAR-CCM+의 최신 버전은 주요 개선 사항을 통해 시뮬레이션 시간과 정확도를 향상시키고 협업을 강화한다. 이를 통해, 고객에게 종합적인 디지털 트윈을 제공해 예측성 높은 시뮬레이션을 구동할 수 있도록 돕는다.  이번 버전에서 지멘스는 모델 기반 적응형 메시 세분화(AMR: Adaptive Mesh Refinement) 솔루션뿐만 아니라, 더욱 빠르고 효과적인 메싱(meshing)을 위해 완전히 새로운 평행 다면체 메셔(parallel polyhedral mesher)를 선보인다. 또한, 최신 출시 버전에는 컨버전스 속도를 개선하면서 설정 시간을 단축하는 자동 결합 솔버 제어 기능(automatic coupled solver control)과 시뮬레이션 결과에 대한 팀 협업을 강화하기 위한 CFD 코드 내 협업 가상현실(VR) 기능이 포함된다.     경쟁에서 발맞춰 차기 혁신을 달성하기 위해서는 더욱 빠르고 신뢰할 수 있는 시뮬레이션 결과가 중요하다. 이번에 심센터 STAR-CCM+에 포함된 차세대 평행 다면체 메셔는 병렬 상태인 경우 직렬 상태일 때보다 최대 30배 더 빠르게 구축돼 사용되는 코어에 관계없이 일관된 메시를 제공하며, 동일한 정확성과 견고성으로 더욱 효과적인 메시 분포를 제공한다.  적응형 메시 세분화 기술은 물리학을 기반으로 메시를 지능적으로 정제하는 모델 기반 AMR로, 사용자 상호작용 및 전산 오버헤드 감소와 전체적인 메시 크기 축소를 가능하게 한다. 또한, 자동 솔버 제어 기능은 연결된 솔버의 사용 용이성과 견고성을 향상시키며, 이는 솔루션의 더 빠른 컨버전스를 가능하게 해 모든 흐름 체제를 즉각적으로 가속화한다. 심센터 STAR-CCM+의 협업 VR은 전 세계의 팀들이 동일한 몰입형 가상 환경에서 실시간으로 상호작용할 수 있도록 해, 의사소통을 향상시키고 의사결정을 가속화한다. 아바타를 활용하면 다수의 VR 고객을 동일한 시뮬레이션에 연결 및 동기화할 수 있다. 아바타는 다른 사용자의 위치를 보여주고, 사용자들이 동일한 경험을 할 수 있도록 사용자 테더링 기능을 제공한다.     심센터 STAR-CCM+는 전산 유체 역학(CFD)과 다중 물리 시뮬레이션을 위한 통합 솔루션으로, 시뮬레이션 엔지니어가 자동화된 설계를 손쉽게 탐사하고 최적화할 수 있게 한다. 심센터와 심센터 STAR-CCM+는 지멘스의 소프트웨어, 서비스 및 애플리케이션 개발 플랫폼의 통합 포트폴리오인 액셀러레이터(Xcelerator) 포트폴리오에 포함된다. 
작성일 : 2020-03-09
RecurDyn V9R3, 드라이브 트레인 솔루션 추가 및 MFBD 성능 향상
  개발 및 공급 : 펑션베이 주요 특징 : 기어, 베어링, 샤프트 등으로 구성된 드라이브 트레인을 위한 전용 솔루션인 DriveTrain 추가, 정밀하고 균일한 메시 생성을 위한 다양한 기능 개선, MFBD의 전처리/후처리 관련 성능 강화, 더욱 직관적인 모델 분석을 위한 Relation Map 리뉴얼, 강체에 대한 Contact Pressure 확인 기능 추가 등 사용 환경(OS) : 윈도우 7/8/10(64비트) 2019년 11월 출시된 RecurDyn(리커다인)의 새로운 버전 V9R3에서는 기어, 베어링 샤프트 등으로 이루어진 드라이브 트레인의 여러 요소들을 손쉽게 모델링하고 시뮬레이션할 수 있게 해주는 DriveTrain(드라이브트레인)이 새롭게 추가되었다. 또한, 더욱 효과적인 시뮬레이션을 위한 전처리 및 후처리 기능 개선, 유연 다물체 동역학(Multi Flexible Body Dynamics: MFBD) 해석 관련 성능 개선 등 다양한 개선이 이루어졌다.  이러한 기능 개선을 통해 RecurDyn은 더욱 깊고 폭 넓은 설계를 할 수 있는 동역학 시뮬레이션 환경을 제공한다.   DriveTrain 새롭게 추가된 DriveTrain은 기어, 베어링 샤프트 등으로 이루어진 드라이브 트레인의 여러 요소들을 손쉽게 모델링하고 시뮬레이션할 수 있게 해주는 RecurDyn 기반의 솔루션이다.   그림 1. DriveTrain 관련 기능   3단계 시뮬레이션 프로세스   그림 2. DriveTrain 시뮬레이션 프로세스   DriveTrain은 GearKS, BearingKS, Shaft 등 총 3개의 툴킷으로 구성되어 있다. 기어, 베어링, 샤프트를 손쉽게 생성할 수 있는 모델러와 이에 특화된 솔버, 그리고 전용 후처리 기능을 이용하여 사용자는 손쉽게 드라이브 트레인 시스템을 시뮬레이션하고 분석할 수 있다.   키소프트와 기술 제휴   그림 3. 키소프트와 기술 제휴   특히 GearKS와 BearingKS의 경우, Gleason(글리슨)의 KISSsoft(키소프트)와 기술 제휴를 통해 개발되어 RecurDyn의 동역학 해석 솔버는 물론, KISSsoft의 Gear Analytic Contact 및 풍부한 베어링 라이브러리를 활용할 수 있다. 이를 통해, 소음, 진동 평가에 필요한 전달오차(Transmission Error)를 비롯한 다양한 결과를 빠르고 정확하게 계산할 수 있다.   그림 4. 풍부한 베어링 라이브러리 지원   다양한 후처리 기능 다양한 후처리 기능을 통해 전달 오차, 캠벨 다이어그램(Campbell diagram), 접촉 압력(Contact pressure), 기어 이빨의 응력과 변형을 확인할 수 있다. 또한, 기어의 백래시 영향 분석, 래틀(Rattle) 및 와인(Whine) 소음 분석을 위한 진동 결과 확인, 샤프트의 응력과 변형 등을 모두 RecurDyn 내에서 확인할 수 있다.    그림 5. DriveTrain의 다양한 결과 분석   모델링 편의성 및 동역학 기능 강화 이번 RecurDyn V9R3의 전처리, 후처리 관련 기능 개선은 단순 편의성 향상을 넘어 더욱 심도 있는 시뮬레이션을 할 수 있게 도와준다.   Relation Map 리뉴얼 Relation Map(릴레이션 맵)이 개체(보디, 조인트, 접촉, 힘 등) 간의 관계를 보다 쉽게 파악할 수 있도록 개선되었다. 새로운 다이어그램 옵션을 통해 왼쪽에서 오른쪽의 순서로 연결관계를 표시할 수 있다. 그리고 개체 별 아이콘을 지원하여 강체, 유연체, 조인트, 힘, 접촉, 그룹 등을 서로 다른 아이콘으로 표시해 준다.    그림 6. Relation Map의 새로운 다이어그램 또한, 선택된 개체와 연결된 선을 강조하는 하이라이트 기능이 추가되었으며, Default, Name, Type의 총 3가지 정렬 방식으로 개체를 정렬할 수 있다. 다이어그램에서 선택한 개체에 대하여 마우스 우 클릭을 통해 손쉽게 속성 창을 확인할 수 있다. 이러한 기능들이 복잡한 RecurDyn 모델에서 더욱 직관적이고 편리하게 연결관계를 분석할 수 있도록 도와준다.   캠벨 다이어그램(Campbell Diagram) 회전체의 진동특성을 분석하기 위해 사용되는 캠벨 다이어그램 기능이 새롭게 개발되었다.   그림 7. 리커다인의 캠벨 다이어그램   이전 버전에서 제공되었던 캠벨 다이어그램에 비해 가볍고 빨라진 차트를 이용하여 회전체의 회전 속도 변화에 따른 진동 특성을 빠르고 편리하게 확인할 수 있다.  특히, 새로운 3D 그래프 기능을 통해 RPM, Frequency, Amplitude의 3차원 데이터 그래프를 직관적으로 확인할 수 있다. 또한 Order Line, Section View 등의 기능을 통해 여러 진동 특성을 새로운 그래프에서 손쉽게 확인할 수 있다.   그림 8. RPM vs. Frequency   그림 9. RPM vs. Order   강체를 위한 접촉 압력 Geo Surface Contact를 이용하여 정의한 강체의 접촉에 대하여 접촉 압력(Contact Pressure)을 확인할 수 있다.    그림 10. 강체의 접촉 압력 확인   이를 통해, 전체 시스템의 동역학적 거동에 의한 특정 부품의 내구도 영향을 유연체 모델로 구성하지 않더라도 쉽고 빠르게 파악할 수 있다.   MFBD 기능 강화 RecurDyn 내에서 더욱 정밀하고 균일한 패턴의 메시를 생성할 수 있도록 개선되었다. 또한, MFBD(Multi Flexible Body Dynamics: 유연 다물체 동역학) 관련 전처리, 후처리 기능 및 성능 개선이 이루어졌다.   메셔 기능 개선 메셔(Mesher)의 다양한 기능이 개선되었다. 먼저, 메셔 기능 관련 아이콘들이 일반적인 메시 작업 프로세스에 맞게 순서가 변경되었다.   그림 11. 메셔 작업 프로세스   Extrude/Spin/Sweep Manual Mesh에 대하여 다양한 타겟 개체 선택 및 생성 옵션을 추가하여 균일한 패턴의 베벨 기어나 헬리컬 기어 등의 메시를 손쉽게 생성할 수 있다.    그림 12. RecurDyn V9R3의 Sweep Manual Mesh   또한, Line Set, Patch Set에 대해서도 임프린트(Imprint)가 가능하도록 개선된 것은 Flex Merge 기능을 사용할 때에도 유용하며, 특정 부위에 대해 좀 더 정밀하거나 균일한 패턴의 메시를 생성하는 데에도 활용될 수 있다.   그림 13. 임프린트를 활용한 정밀 메시   Local Remesh 기능도 개선되어 이제 여러 면(Face)을 선택해 동일한 요소 사이즈로 리메시할 수 있다.   그림 14. RecurDyn V9R3의 Local Remesh 개선   MFBD 성능 개선 FFlex와 RFlex의 전처리, 후처리 관련 다양한 기능이 추가되어 작업의 편의성이 향상되었다. 사용하지 않는 재질(Material)과 속성(Property)을 자동으로 삭제하는 기능이 추가되었으며, 빔(Beam)에 대한 Node Set, BC, Output 생성 시 Add/Remove(Continuous) 선택 기능에서 Patch, Line 타입을 지원한다.   또한, 기존 Export Contour Data 기능에 대하여 플롯(Plot)의 범례(Legend) 표시를 개선하여 구체적인 정보를 표시하며, 노드(Node)를 기준으로 선택할 때 Node/Patch/Line/Element Set을 선택할 수 있도록 개선되었다.   그림 15. RecurDyn V9R3의 Export Contour Data 개선   FFlex와 RFlex의 전처리 및 후처리 성능도 향상되었다. 먼저 전처리 작업 속도가 기존 버전 대비 1.5~2배 빨라졌다. 대용량 유연체 모델 파일의 오픈 속도 및 유연체 편집 모드와 어셈블리 편집 모드 간 전환 속도 역시 평균 1.5~2배 빨라졌다. 특히 Solid10 요소가 많은 경우, 최대 5배까지 속도가 향상된다.   그림 16. 편집 모드 전환 속도 개선   후처리의 경우 평균 2배의 속도 개선이 이루어졌다. FFlex 유연체가 포함된 모델의 솔버 파일의 생성속도는 약 2.5배 이상의 개선이 이루어졌다. 유연체의 결과 파일 생성의 경우, 해석 완료 후 후처리 및 Output Regenerator 실행 속도가 약 2배 이상 빨라졌다. 또한 애니메이션 파일 가져오기 및 유연체 애니메이션 재생 시, 요소의 개수가 10만 개 이상인 유연체가 포함된 모델의 경우에 대해서도 많은 속도 향상이 이루어졌다.   Orthotropic2D, Anisotropic2D 물성치 추가 RecurDyn FFlex의 Shell 요소를 위한 물성치로 Anisotropic2D와 Orthotropic2D가 추가되었다. Anisotropic2D의 경우 Nastran의 MAT2, Orthotropic2D의 경우 Nastran의 MAT8에 대응된다. 특히 Orthotropic2D의 경우, 기존의 Orthotropic에서 Transverse Shear Modulus를 사용할 수 있도록 개선된 물성치이다. 모두 Shell4 Element에 적용할 수 있다.   RecurDyn Temperature Load 파일 RecurDyn FFlex에서 Thermal Load(열 하중)를 적용할 때, 외부 구조해석 소프트웨어에서 해석한 열 해석 결과를 CSV 파일 포맷의 RTL(RecurDyn Temperature Load) 파일로 가져와 열 응력/변형률을 고려한 유연체의 변형과 응력을 확인할 수 있다.     기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2019-11-01
리커다인 V9R2, MFBD에서 멀티피직스까지 해석 편의성과 성능 향상
  개발 및 공급 : 펑션베이 주요 특징 : 고품질의 메시를 위한 다양한 기능 및 메시 힐링 기능 추가, MFBD 성능 개선, 열응력을 고려한 해석, UI 편의성을 위한 시스템 내비게이터 추가, CAD 계층을 조정하여 가져오기 기능 추가, 다분야 통합 해석을 위한 Acoustics 툴킷 추가, 입자와 유연체의 연성해석 지원 등 사용 환경(OS) : 64비트 윈도우 7/8/10   리커다인(RecurDyn)의 새로운 버전인 리커다인 V9R2는 다양한 성능 개선과 신규 툴킷의 추가로 사용성을 더욱 높였다. 서브시스템 간 쉽고 빠른 이동이 가능한 ‘시스템 내비게이터’와 CAD 계층구조를 고려한 ‘CAD 임포트(Import)’, 모델링 요소를 그룹화할 수 있는 ‘제너럴 그룹(General Group)’ 등 모델링 편의성 관련 기능이 개선되었다. 더욱 정확하고 쾌적한 MFBD(Multi Flexible Body Dynamics) 해석을 위한 메셔(Mesher) 기능 개선과 MFBD 성능 개선이 이루어졌으며, 열응력과 열변형률을 고려한 MFBD 해석 기능이 추가되었다. 다분야 통합 해석에서는 이제 입자와 유연체간의 연성해석을 지원하며, FMI 기반 다중 코시뮬레이션(Co-Simulation)이 가능한 제너럴 코심(General CoSim) 기능이 추가되었다. 또한, 소음 특성을 분석할 수 있는 어쿠스틱스(Acoustics) 툴킷이 새롭게 추가되었다. 모델링 편의성   리커다인의 UI 편의성의 핵심은 해석자, 설계자 모두가 쉽고 빠르게 작업을 완료할 수 있게 하는 것이다. V9R2에서는 리커다인 모델링 단계에서 사용자의 작업시간을 단축시킬 수 있는 다양한 기능이 추가되었다.   시스템 내비게이터   리커다인 모델링 과정에서 여러 개의 서브 시스템을 사용할 경우, 계층구조가 복잡해질 수 있다. 이때, 새롭게 추가된 시스템 내비게이터를 통해 모델에 속한 여러 서브 시스템의 내부 엔티티 구조를 한눈에 파악하고 원하는 서브 시스템의 에디트 모드(Edit Mode)로 손쉽게 이동할 수 있다. 데이터베이스 창과 동일한 형태로 이루어진 시스템 내비게이터는 여러 서브 시스템과 그에 속한 보디(Body), 조인트(Joint), 포스(Force) 등을 트리 메뉴로 표시한다. 또한, 계층 순서와 상관없이 원하는 서브 시스템이나 보디의 에디트 모드로 곧바로 이동이 가능하여 빠른 서브 시스템 모델링이 가능하다. 그림 1. 시스템 내비게이터 CAD 임포트 개선   개선된 임포트 CAD 기능은 CAD 파일을 임포트하는 단계에서 직관적인 UI를 통해 원본 CAD 파일의 계층 구조를 기반으로 여러 지오메트리(Geometry)를 통합(Merge)하여 보디와 서브 시스템을 자동으로 생성하고, 불필요한 지오메트리는 가져오지 않을 수 있다. 이를 통해 CAD 파일 임포트와 관련된 작업 시간을 대폭 줄여주고 원본 CAD 파일에 가까운 구조를 리커다인에서도 활용할 수 있어, 모델링 시간을 크게 단축시킬 수 있게 되었다. 그림 2. CAD 계층구조를 고려한 임포트 제너럴 그룹(General Group)   복잡한 리커다인 모델에서 사용자가 원하는 엔티티들을 그룹화하여 관리할 수 있게 되었다. 더불어, 그룹화된 엔티티들은 한번에 오브젝트 컨트롤, 레이어 변경, 렌더링 타입 변경 등이 가능하다. 그룹 속성 창에서 개별 엔티티(혹은 여러 엔티티)의 속성창을 띄우는 것도 가능하다. 이러한 제너럴 그룹의 장점을 이용하여 보다 편리하게 모델링 엔티티들을 관리할 수 있으며, 원하는 엔티티를 보다 쉽고 빠르게 선택하여 속성 확인 및 변경 작업을 수행할 수 있다. 그림 3. 제너럴 그룹 MFBD 기능 강화   리커다인에서 기계 시스템의 MFBD 해석 작업을 더욱 정확하고 쾌적하게 수행할 수 있다. 이미 이전 버전인 V9R1에서 메셔 엔진이 업그레이드되어 안정적인 메시 작업을 할 수 있었다. V9R2에서는 더욱 향상된 메시결과를 얻을 수 있는 기능들이 추가되었다. 또한, MFBD 해석속도 및 후처리 성능이 개선되었으며, 열응력과 열변형률을 고려한 MFBD 해석이 가능하다. 메셔 기능 개선   고품질의 메시를 생성할 수 있도록 다양한 기능들과, 메시품질을 저해하는 요소(Element)들을 개선하기 위한 여러 기능들이 추가되었다. 이를 통해 메시 작업 시간을 줄이고, 보다 향상된 품질의 메시를 MFBD 해석에서 사용함으로써 해석 속도와 정확도도 향상될 수 있다. ‘Use Current Shell Mesh Info’를 통해 셸 메시(Shell Mesh) 작업을 먼저 수행한 후 이를 이용하여 솔리드 메시(Solid Mesh)를 생성함으로써, 고품질의 메시를 만드는 작업이 가능하다. 그림 4. Mesher - Use Current Shell Mesh Info 그림 5. Mesher - Quality Check 리메시(Remesh) 기능의 강화로 MFBD 해석 목적에 맞게 각 면(Face)마다 Min/Max 값(요소 크기)을 지정하여 특정 부분에 대해서 보다 상세한 메시를 생성할 수 있게 되었다. 퀄리티 체크(Quality Check) 기능 개선에서는 'Element Check' 관련 항목에 대해 Min/Max 값을 확인할 수 있게 되었고, 모서리 부분의 라인(line)들의 연결 관계를 확인할 수 있는 'Line Check ' 기능이 추가되었다. 그리고 다이얼로그에서 저품질의 요소를 선택할 수 있는 기능과 요소의 ID를 확인할 수 있는 툴팁 표시 기능이 추가되었다. 이 외에 셸 메시의 품질을 개선하기 위하여 노드(Node)를 합치거나, 요소를 분리하고 합치는 메시 힐링(Mesh Healing) 관련 기능을 활용할 수 있다. 그림 6. Mesher - Mesh Healing MFBD 성능 개선   노드/요소 수 혹은 모드수가 많은 FFlex, RFlex 보디를 포함한 MFBD 모델에 대하여 전처리, 시뮬레이션, 후처리에 걸쳐 다양한 성능이 개선되었다. 모델 오픈 속도가 빨라졌으며, 어드밴스드 커넥션(Advanced Connection) 옵션을 통해 매트릭스 포스(Matrix Force)와 픽스드 조인트(Fixed Joint) 사용 시 해석 속도가 향상될 수 있다. 또한 다양한 후처리 작업과 관련된 성능이 개선되었다.   Matrix Force : FFlex, RFlex 보디에 매트릭스 포스가 적용된 경우, 2~3배 해석 속도 향상 Fixed Joint : RFlex 보디에 픽스드 조인트가 연결된 경우 2~5배 해석 속도 향상 애니메이션 플레이 성능 : RFlex 보디의 모달 스케일링(Modal Scaling) 사용 시, 약 2~3배 속도 향상, FFlex의 경우 약 5배 속도 향상 RFA 파일 생성 : RFlex 보디가 포함된 모델 해석 시, RFA 파일 생성 속도, 약 2배 향상(Regeneration 포함) 컨투어(Contour) 창에서의 Min/Max 계산 성능 : 컨투어 창에서 Min/Max 계산 시 성능 향상. Displacement는 최대 7배, Stress/Strain은 최대 35배 계산 속도 향상 컨투어 데이터의 익스포트(Export) : 컨투어 창에서 플롯 및 익스포트 사용 시 처리 성능 향상 노드 데이터(Node data) : Displacement는 최대 200배, Stress/Strain은 최대 40배 처리 속도 향상 Min/Max data : Displacement는 최대 7배, Stress/Strain은 최대 36배 처리 속도 향상 열하중(Thermal Load)   RecurDyn/FFlex에서 열하중(Thermal Load)을 고려한 해석이 가능하게 되었다. 미리 생성해 놓은 NodeSet에 Expression을 이용하여 열하중을 정의할 수 있다. 이 때, 기준이 되는 온도는 해당 FFlex 보디의 머터리얼(Material)에서 지정할 수 있다. 해석 완료 후에는 컨투어에서 Thermal Strain을 확인할 수 있으며, 플롯에서는 Thermal Load로서 적용된 온도와 각 Output Node에 대한 Thermal Strain을 확인할 수 있다. 이를 통해, MFBD 해석 시 Thermal Strain, Stress 등을 고려한 FFlex 보디의 변형과 응력을 확인할 수 있다. 그림 7. 열하중 다분야 통합 해석   동역학 해석 구조해석, 열유체해석, 입자 해석 등을 함께 고려하는 다분야 통합 해석 분야에서도 중요한 역할을 하고 있다. 다분야 통합해석 분야에서 꾸준히 장점을 발휘해 온 리커다인은 이번 V9R2에서도 다분야 통합 해석에 대한 다양한 개선과 신규 툴킷 추가가 이루어졌다. 입자와 유연체의 연성해석   입자에 의한 유연체의 변형 혹은 보디의 변형이 입자 거동에 미치는 영향 등을 손쉽게 모델링하고 연성 해석 결과를 확인할 수 있다. 이를 통해 유체 유동에 따른 유연체의 상호 작용을 고려한 동역학 해석을 수행할 수 있게 되었다.(FFlex/RFlex 보디 모두 지원) 그림 8. 입자와 유연체의 연성해석 입자와 어셈블리에 속한 강체의 연성해석   벨트(Belt), 체인(Chain), Track LM, Track HM에서 어셈블리 기능을 이용하여 생성된 보디들도 입자법 소프트웨어와의 연성 해석에 사용할 수 있게 되었다. 이를 통해 윤활유의 윤활 작용을 고려한 체인 거동 해석이나 일부가 물에 잠긴 노면을 이동하는 궤도 차량(Tracked Vehicle)의 주행 시뮬레이션 모델 등을 생성할 때, 보다 빠르고 편리하게 입자법과의 연성 해석 모델을 생성하고 시뮬레이션을 수행할 수 있게 되었다. 리커다인과 EDEM의 연성 해석(Co-Simulation)을 통해 실제 산업 현장에서 일어나는 입자 거동에 영향을 미치는 다양한 물리적 현상이 포함된 영역에 대해 시뮬레이션이 가능하다. 특히, 리커다인과 EDEM 모두 사용자 친화적인 GUI 환경을 제공하여 보다 쉽고 빠르게 입자거동과 강체 시스템의 동역학적 거동의 연성해석을 수행할 수 있다. 제너럴 코심   새롭게 추가된 제너럴 코심(General CoSim) 기능을 통해, 리커다인과 FMI를 지원하는 소프트웨어 여러 개를 동시에 연성해석할 수 있다. 제너럴 코심으로 리커다인이 마스터(Master)일 때 아메심(AMESim), 시뮬레이션X(SimulationX), 시뮬링크(Simulink) 등의 여러 제어 소프트웨어를 동시에 슬레이브(Slave)로 지정하여 연성해석을 수행할 수 있다. 이때, 인터페이스는 FMI를 이용하기 때문에 FMI를 지원하는 소프트웨어는 모두 활용할 수 있다. 특히, 리커다인이 마스터일 때 리커다인을 슬레이브로도 지정할 수도 있다. 예를 들어, 제어기는 시뮬링크를, 유압 액추에이터는 아메심을 이용하여 모델링하고 이를 리커다인 모델과 동시에 연성해석하는 것이 가능하다. 그림 9. 제너럴 코심 어쿠스틱스   RecurDyn/Acoustics는 MFBD 해석결과로부터 소음에 대한 특성을 나타내는 ERP(Equivalent Radiated Power)를 계산해주는 소음 분석 툴킷이다. 계산된 ERP의 분포를 통해 유연체 표면의 어느 부위에서 소음이 많이 방사될 수 있는지, 어떤 주파수 대역의 ERP가 지배적인 지를 확인함으로써 기구 시스템의 소음 예측 분석을 수행할 수 있다. 그림 10. 어쿠스틱스 툴킷에서 제공하는 기능들 그림 11. ERP 결과를 컨투어로 확인 가능   기사 상세 내용은 PDF로 제공됩니다.
작성일 : 2018-10-04