• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "단면"에 대한 통합 검색 내용이 497개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
전기자동차용 헤어핀 모터 코일의 DfAM 및 금속 적층제조 프로세스
앤시스 워크벤치를 활용한 해석 성공사례   최근 전기자동차의 수요가 증가함에 따라 전기자동차의 성능을 보다 향상시키기 위한 연구가 활발히 진행되고 있다. 특히 모터 분야에서 헤어핀(hairpin) 코일의 적용으로 성능이 향상됨을 확인하였으며, 이미 여러 양산형 모델에도 적용되어 실사용 중에 있다. 그러나 헤어핀 코일은 복잡한 제조 공정 및 제작 기술이 필요하다는 단점이 있다. 이렇게 기존 생산 공정에서 발생할 수 있는 문제점을 해결하고 추가적인 성능 향상을 도출하기 위해 금속 3D 프린팅 기술을 적용하여 모터 코일을 제조하는 방법이 연구되고 있다.  이번 호에서는 앤시스에서 제공되는 맥스웰(Maxwell)과 앤시스 애디티브(Ansys Additive)를 활용한 시뮬레이션을 기반으로 헤어핀 코일의 DfAM(Design for Additive Manufacturing) 및 적층공정 해석을 수행하며 전체 제작 프로세스를 제시하고자 한다.    ■ 김선명 원에이엠 DfAM팀의 연구원으로, 적층제조 특화 설계를 담당하고 있다. 이메일 | smkim@oneam.co.kr 홈페이지 | www.oneam.co.kr   전기자동차용 헤어핀 모터 코일 헤어핀 코일이란 <그림 1>과 같이 헤어핀의 형상처럼 직사각형 단면의 도선을 구부려서 제작되는 모터 코일이다. 기존의 원형 도선의 권선 형태로부터 성능 개선을 위해 개발되었으며, 성능 향상이 입증되어 이미 상용 전기차량에 적용되어 실사용 중에 있다. 이러한 직사각형 단면의 헤어핀 코일을 사용하는 이유는 기존 원형 코일 대비 높은 점적률(fill-factor)을 갖기 때문이다. 점적률이란 <식 1>과 같이 모터고정자의 슬롯 면적 대비 구리 도선이 차지하는 면적의 비로 계산이 된다. 점적률이 높아지면 <그림 2>와 같이 도선 간 빈 공간 영역이 작아진다. 따라서 상대적으로 권선 저항이 낮아지게 되고 도선간 접촉 면적이 증가함에 따라 열전달 계수가 높아져, 방열 효과도 증가하는 효과가 있다. 이러한 헤어핀 코일의 적용으로 원형도선 대비 모터의 성능을 향상시킬 수 있다.   식 1   그림 1. 헤어핀 코일   그림 2. 원형 도선과 헤어핀 코일의 비교(출처 : MG Motor article : Why 1% efficiency improvement means so much, Hairpin Technology : Hubiz)   헤어핀 코일은 <그림 3>과 같은 공정을 통해 조립된다. 제일 먼저, 원재료인 사각형 단면의 코일을 헤어핀 형태로 성형한 후 모터 고정자의 슬롯에 조립한다. 그 다음 같은 상끼리 연결될 수 있도록 트위스팅(twisting) 공정을 거친 후, 서로 접촉하는 도선끼리 용접하는 과정을 거쳐 완성된다. 추가로 도선에 용접될 부분의 절연재를 제거하는 등의 공정이 필요하다. 이처럼 헤어핀 코일 모터는 복잡한 제작 절차와 제작 공정이 필요하며, 특히 고난도의 용접 기술이 요구된다. 무엇보다 제조 공정 중 제품에 문제가 발생한다면 문제가 되는 부분만 처리가 불가능하기 때문에, 제작 공정이 처음부터 수행되어야 한다.   그림 3. 헤어핀 코일의 조립 공정(출처 : Maximising E-Machine Efficiency with Hairpin Windings, by Shaoshen Xue-Motor Design Limited)   이러한 문제를 해결하기 위해 최근에는 금속 3D 프린터를 사용한 모터 코일의 금속 적층제조에 대한 연구가 진행되고 있다. 금속 적층제조는 다음과 같은 장점이 있다. 제작 공정 간소화 : 헤어핀 코일의 3D 프린팅 공정 적용 시 3D 프린팅 장비만 있다면 기존의 복잡한 제작 공정이 필요 없으므로, 제작 공정을 보다 간소화시킬 수 있다. 일체화 : 개별 파트로 나누어진 헤어핀 코일을 일체화하여 하나의 부품으로 제작이 가능하기 때문에, 용접을 최소화한 공정이 가능하여 제작 중 파트 불량률을 최소화할 수 있다.  설계 자유도 향상 : 헤어핀 코일 형상의 제약이 없으므로 형상 구현의 자유도가 높기 때문에, 성능 향상을 위한 설계가 용이하다.  금속 적층제조를 고려한 헤어핀 코일의 설계를 위해서 시뮬레이션을 기반으로 전자기 성능 분석, 열 특성 분석, 적층 공정 해석의 전체 설계 및 제작 프로세스를 진행한다. 이 글에서는 앤시스 맥스웰과 앤시스 애디티브를 활용한 시뮬레이션을 기반으로 헤어핀 코일의 DfAM 및 적층공정 해석을 수행하며, 전체 제작 프로세스를 제시하고자 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-04-01
JK-PLM : 제품 정보 통합 관리 시스템
개발 및 공급 : 지경솔루텍, www.jikyung.com     지경솔루텍은 2005년에 CAD(NX, SolidEdge)/CAE/CAM 기반의 소프트웨어 공급 및 기술지원을 기반으로 설립되어, 2D/3D CAD를 활용한 설계자동화 및 견적자동화, 그리고 웹라이브러리 서비스 구축의 다수 성과를 가지고 있는 기업이다. 2018년부터는 자체 개발한 PLM(Product Lifecycle Management) 시스템(JK-PLM)을 활용하여 스마트공장 구축 지원 사업에 다수의 구축 성과를 내어 제조업 IT혁신 중심의 미래지향적 가치를 창출하고 있다. 또한 반도체, 항공·자동차부품, 산업용설비, 선박 및 열교환기, 금형, 의료기기, 방산 등 다양한 제조업종에 JK-PLM을 적용하여 고객의 다양한 요구사항 및 급증하는 사양정보를 효과적으로 관리하고 있다.   주요 특징 최신 웹 표준방식 기반의 직관적인 UI/UX 고객사 업무 프로세스 반영한 맞춤기능 개발 용이 다양한 CAD 프로그램과 연동 가능 랜섬웨어 보호 솔루션을 통한 보안관리   주요 기능 도면 및 기술문서관리 업무과정에서 발생하는 일반문서, 기술문서, 도면(2D) 파일의 체계적인 관리를 도와준다. 또한 문서/도면의 변경이력 정보를 확인할 수 있으며, 연계 문서관리가 용이하고, 최신 본 작업환경을 제공한다. 이와 함께 MS Office와 연동되는 통합 도구를 통해 파일 업로드, 다운로드, 수정이 가능하다.   2D/3D 통합 다양한 CAD프로그램과 직접 연계하여 도면 및 BOM 정보를 등록 및 관리할 수 있다. 파일명, 속성정보, 도번 채번, 변환(pdf, dwg) 기능을 제공한다. 연동 가능한 프로그램은 NX, CATIA, Creo, SolidWorks, SolidEdge, Inventor, AutoCAD 등이다.   2D/3D 웹 뷰어 CAD 뷰어는 데스크탑, 모바일, 웹 애플리케이션에 Embedded 뷰어로 탑재가 가능하다. 또한 다양한 2D/3D CAD 파일 포맷을 지원하여 활용성이 높다. 최단/최대거리, 평행면거리, 두께, 직선/평면각도, 구배각도 측정, 동적단면 확인, 모델링 분행 기능이 가능하다.   부품 및 BOM 관리 생산 제품을 구성하는 부품 정보(품명, 품번, 재질, 단위 등)를 관리할 수 있다. 또한 BOM 구조(모부품/자부품), BOM 정보(수량 등)를 편집하고 관리할 수 있다. 부품 및 BOM 정보 이력 및 비교, 정전간/역전개, ERP 및 MES시스템 연동이 가능하다.   수주/제품정보 관리 수주 및 제품 기준으로 도면, 프로젝트 일정, 설계변경정보, BOM 정보 등을 관리한다. 제품 종류, 구분, 설비, 모델, 의뢰일, 납기일, 거래처 정보 및 담당자 등을 관리한다.   프로젝트 관리 일정/자원/산출물/이슈관리를 통해 프로젝트의 계획, 실행, 평가 및 개선 등의 프로세스를 관리할 수 있으며, 현재 진행 중인 프로젝트 현황을 모니터링할 수 있다. WBS 작업, 기간, 선/후행 관계, 산출물 지정이 가능하고, Gantt Chart 기능을 지원(선/후행 관계, 진척률 작업을 용이하게) 한다.   설계변경관리 설계변경요청(ECR)에 따른 설계변경통보(ECO) 관리 기능을 제공한다. 변경요청 및 통보가 되면 자동으로 이메일 알람 메세지를 전달한다. 현장 부적합 사항에 대한 요청과 조치를 할 수 있으며, 주관부서 결재 기능과 배포 기능도 제공한다.   전자결재 및 전자배포 도면, 기술문서, BOM에 대한 확정과 배포를 위한 전자 결재 기능을 제공한다. 결재진행 현황을 확인하고 결재 담당자와 배포 담당자에게 알람 이메일을 발송한다.   협력사 배포 커뮤니티 정보 협업처나 프로젝트 그룹내에서 정보공유 및 협업을 위한 커뮤니티 기능을 제공한다. 배포 커뮤니티 기능은 배포 기간, 배포 권한(보기, 인쇄, 다운로드), 배포 파일(원본, PDF) 설정 기능 등이 포함되어 있다. 지정된 협업처에서만 사용이 가능하고, 배포된 문서를 확인할 수 있는 전용 뷰어도 제공한다.   도입 효과 도면 및 기술문서의 정보 검색 시간 단축을 통한 설계업무 집중 가능 개발 히스토리 관리를 통한 프로젝트 노하우 축적 고객의 다양한 요구사항을 효과적으로 관리 영업,설계,생산,구매,품질 등 부서간 업무 협업 및 정보 공유로 효율성 향상   주요 고객 사이트 반도체장비 : 도쿄일렉트론코리아, 유니셈, 펨트론, 에이피텍, 에스엘티, 에스엘케이, 유진디스컴, 와이엠씨 외 다수 항공·자동차부품 : 대성사, 지브이엔지니어링, 로텍, 태창기업, 동산공업, 위제스, 한길에스브이 외 다수 산업용설비 :  대봉기연, 신암, 윌테크, 솔팩, 온품 외 다수 선박부품 및 열교환기 : 강원에너지, 강림중공업, KHE, 한라아이엠에스, 태진중공업, 지원엠에이치이 외 다수 금형 : 대창금형, 영신공업사   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-03-04
헥사곤, 영남대의 자율운항선박 연구에 다물체 동역학 시뮬레이션 솔루션 지원
헥사곤 매뉴팩처링 인텔리전스(헥사곤 MI)는 영남대학교의 박지혁 교수 연구팀이 해양수산과학기술진흥원의 재정지원을 받아 수행한 ‘6000톤급 자율운항선박을 위한 자동계류장치 설계 및 구조 최적화에 대한 연구’에 자사의 동역학 시뮬레이션 솔루션인 아담스(Adams)를 지원했다고 밝혔다. 영남대학교 박지혁 교수 연구팀은 효율적인 진공흡착패드 방식의 자동계류장치를 설계하고, 계류장치가 가해주어야 하는 계류력을 도출했다. 다양한 변수가 존재하는 해상 환경에서 선박의 움직임을 실제와 근접하게 구현하여 계류력을 도출하고 하드웨어를 설계하는 작업에 디지털 시뮬레이션을 활용하지 않을 경우, 많은 자원과 시간이 소요된다.  연구팀은 아담스를 통해 다양한 해양 환경과 유사한 조건을 소프트웨어로 구현해 계류조건과 상태를 파악하고, 하드웨어 설계를 검증 및 최적화하는 데에 시간과 자원을 절약할 수 있었다. 아담스의 해석 역량과 고성능 컴퓨팅 환경(HPC)을 활용해 대형 모델을 실제로 제작하고, 기후 환경 조건을 기다릴 필요 없이 디지털로 시뮬레이션해 6000톤급 중형 자율운항선박의 자동계류장치 성능 검증에 필요한 다양한 조건 값을 반영해 최적의 결과를 도출했다. 아담스는 시스템 단위의 설계 검증을 지원하고, 엔지니어링 효율성 확보해 제품 개발 비용을 절감시키며, 동작, 구조, 작동 및 제어를 비롯한 여러 분야 간 복잡한 상호 작용을 평가하고 관리하여 최적의 성능을 구현하는 제품 설계를 지원한다.     자율항법 기술이 적용된 자율운항 선박의 필요성이 증가함에 따라 계류방식도 자동화가 가능한 방식으로 변경될 필요가 있다. 해양을 운항하는 6000톤급 이상의 선박이 부두에 정박하기 위해서는 계류 로프를 기반으로 하는 계류 방법이 주로 사용되고 있는데, 이러한 기존의 방식 대신 자동계류시스템을 도입할 경우 인력 개입을 최소화 및 무인화하고 위험 요소를 줄일 수 있다. 이미 스위스의 카보텍(Cavotec), 스웨덴의 트렐레보그(Trelleborg) 등의 기업은 자율운항선박이 무인화 개념으로 구현되는 시스템을 고려해 로봇 팔 기반의 계류장치를 개발하고 있다. 이번 연구를 통해 국내에서도 기술을 검증한 영남대학교 박지혁 교수는 “하드웨어 설계를 위해서는 계류조건을 파악하는 것이 중요한데, 계류조건을 연구하기 위해 동역학 해석 프로그램인 헥사곤의 아담스를 사용했다”면서, “아담스를 통해 도출한 계류력을 기반으로 적합한 메커니즘을 설계하고, 주요 구조인 링크의 단면적에 대한 최적 설계를 수행했다”고 말했다. 한국 헥사곤 매뉴팩처링 인텔리전스 성브라이언 사장은 “지난 몇 년간 자동차 업계가 자율주행으로 연구 및 투자가 활발했던 만큼, 선박 분야에도 자율운항 기술 개발 및 실증이 활성화될 것으로 기대된다”면서, “한국 기업들이 조선업계의 선도적 기술을 지속적으로 개발해 나갈 수 있도록 헥사곤은 소프트웨어를 통한 디지털 리얼리티 구현, 엔지니어링 설계에 생성형 AI 적용 등 연구 개발에서 생산과 사후관리까지 디지털 혁신을 적용할 수 있도록 적극 지원하겠다”고 전했다.
작성일 : 2024-02-06
Visual Crash Studio : 충돌 구조물의 설계 해석 및 최적화 프로그램
개발 : Impact Design Europe 주요 특징 : 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화 지원, SFE 및 SBE 기반으로 충돌하중을 받는 박판구조물의 설계/해석/최적화, 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과 도출, 사용자 친화적인 통합 작업 환경 등 사용 환경 : 윈도우 PC/랩톱 자료 제공 : 브이에스텍   그림 1. 유한요소 모델   그림 2. VCS 모델   차량 충돌 안전 법규 및 상품성 평가는 실제 충돌 상황을 최대한 반영하고 승객의 사망 및 심각한 상해를 줄이기 위하여 지속적으로 강화되고 있고, 자동차 제조업체는 이러한 평가 프로토콜에 따라 차량의 안전 등급을 높이기 위해 노력하고 있다. 다양한 충돌 테스트는 제품 설계 및 개발 프로세스를 가속화하기 위해 가상 엔지니어링 모델링 및 시뮬레이션 기술에 크게 의존하는 차량 제조업체에 상당한 부담을 주고 있다. 일반적으로 각 설계 단계에서 CAD 모델 준비, 각 하중 케이스/물리적 테스트에 대한 유한요소(FE) 모델 생성, 평가 및 개선 작업이 필요하므로 복잡하고 많은 시간이 소비되어, 간편하고 빠르게 차량의 충돌 성능을 평가하고 개선하는 것이 큰 관심사이다. 특히, 프로토타입 제작 및 개발 프로세스 후반의 설계 변경으로 인한 시간과 비용을 줄이기 위해서는 초기 콘셉트 단계에서부터 다양한 설계에 대한 충돌 성능의 평가 및 개선을 통한 충돌 성능의 최적화가 필요하다. 매크로요소법(Macro Element Method)을 사용하는 Visual Crash Studio(VCS)는 비전형적 모델링 및 시뮬레이션 접근 방식으로 단순한 설계 환경에서 빠르고 신뢰할 수 있는 결과를 제공하며, 설계 초기 단계부터 차량의 충돌 성능 평가/개선 및 최적화가 가능한 CAE 소프트웨어이다.   그림 3   VCS의 주요 특징 매크로요소법, 수퍼폴딩요소(SFE : Super-folding Element) 및 수퍼빔요소(SBE : Super-beam Element) 개념을 기반으로 객체지향유한요소(OOEF : Object Oriented Finite Element) 정식화와 결합된 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화가 가능 다양한 재료의 박판구조물의 대변형 붕괴 거동의 예측에 성공적으로 적용이 가능하며, 유한요소 솔버와 경쟁이 아닌 보완 관계 매크로요소법에 기반한 간편한 모델링 및 설계 변경, 빠른 계산 속도 및 신뢰성 있는 결과의 도출을 통해 설계 초기 단계에서부터 충돌 부재의 충돌 성능 분석 및 최적화 가능 사용자 친화적인 통합(all-in-one) 작업 환경 주요 기능 : Material Editor, Cross Section Editor, 3D environment, Cross Section Optimizer, Chart Wizard 단면 수준에서 부재의 충돌 특성 파악 및 설계를 위한 2D 환경 제공 부재, 어셈블리 및 전체 구조물 등의 복잡한 충돌 해석 및 설계를 위한 3D 환경 제공 2D 및 3D 환경에서 독립적으로 설계 수정 및 계산이 가능하며, 각 환경에서의 수정 및 계산 결과는 자동으로 전 모델에 반영 통합 전/후처리 도구 : 솔버와 통합된 전/후처리 프로세스로 모델링 및 설계 변경이 간단하여 다양한 설계안의 충돌 성능 평가가 빠른 시간에 가능하고 챗 위저드(Chart Wizard) 등으로 다양한 결과의 비교 분석이 용이   그림 4. VCS의 일반적 설계 및 계산 프로세스   VCS의 작업 프로세스 박판 충돌구조물의 설계, 해석 및 최적화는 통합 환경에서 수행되며, 일반적인 작업 프로세스는 <그림 4>와 같다. <그림 5>는 VCS의 메인 뷰(Main View) 화면이며, 메인 툴바(Main Toolbar)는 작업 프로세스에 따른 툴 그룹(File, Model, Calculate and Results, Analysis, View 및 Help Tool)으로 구성된다. ‘Model Tool’은 모델 생성 프로세스에 필요한 모든 도구(Select, Nodes, Beams, Spine-line, Rigid, Contact, Group, Special, Measure 등)를 제공하며, ‘Calculate and Results Tool’은 계산 및 결과 비교에 유용한 처리 장치(Processing Unit), Chart Wizard, 애니메이션 도구 모음 등의 기능이 있다. ‘Analysis Tool’은 단면자동분석(Cross Section Analyzer) 기능 전용이며 ‘View Tool’은 추가 3D 보기 도구를 제공한다. ‘Help Tool’에서는 VCS 소프트웨어의 모든 기능에 대한 최신 설명서와 도움말 정보를 찾을 수 있다. 또한 개발사 홈페이지에서도 모든 사용 매뉴얼과 따라하기 매뉴얼을 다운로드할 수 있다.   그림 5. VCS의 메인 뷰 화면   VCS의 작업 프로세스의 순서에 따른 주요 기능은 다음과 같다.   FE Mesh/Initial geometry import 다양한 FE 데이터 및 CAD 지오메트리(geometry) 불러오기 기능을 제공한다.   재료 정의(Material Editor) 재료상수(Material Constraint) : Hardening Factor, Mass Density, Poisson Ratio, Proof Strain, Proof Stress, Young Modulus 응력-변형률(Stress-Strain) 특성 : Array, Power Law, Polynomial, User Function-2D, Array 3D 변형률속도(strain rate) 특성 : Cowper Symonds, Modified Cowper Symonds, User defined function-3D, Johnson Cook   Fracture Indicator : Surface strains, Cockcroft-Latham/Norris LS-DYNA MAT24(MAT_PIECEWISE_LINEAR_PLASTICITY) 호환 Material & Characteristic Repository 기능   2D Structure(Cross Section Editor) : Cross Sections & Cross Section analysis Cross Section Editor는 단면의 충돌 성능 최대화를 위한 설계, 계산 및 최적화를 위한 편집기이다. 여기서 처리된 단면은 3D 수퍼빔요소(SBE)에 사용되며, Cross Section Editor의 이론적 배경의 핵심은 수퍼폴딩요소(SFE)이다. Point, plate, segment, SFE 및 connection으로 모든 단면을 생성할 수 있으며, 쉽고 편리한 단면 형상 및 재료 특성의 변경으로 다양한 디자인의 빠른 변경이 가능하다. Cross Section 계산 결과 단면 상태에서는 7가지의 충돌 거동(Axial Response, Design Recommendations, Bending Response, Lateral Response, Denting Response, Torsion Response, Elastic Properties-축/굽힘/전단 강성 등)을 결과로 표시 각 결과는 주어진 붕괴 응답 모드에 대한 특성 파라미터((최대 하중 및 모멘트, 에너지 흡수 능력, 굽힘힌지의 총 회전 등과 같은 변형제한 값)의 정보 표시 Design Recommendations   효과적인 축방향 붕괴를 위한 단면 최적화 프로세스 : 결함이 있는 단면은 점진적 붕괴가 발생하지 않고 불규칙한 접힘으로 인해 많은 에너지 흡수가 적음 상세 단면 형상 근사화를 위한 단순화 모델링 과정을 통한 결함 제거 : 단면 수준에서 허용 가능한 접힘 모드를 선택하면 다음단계로 단면에 대한 각 SFE에 대해 결함 제거 과정을 수동으로 진행 단면 계산 결과 비교 툴 제공 및 결과 report 생성   3D Structure : Super Beams 3D 가상 설계 공간은 SBE를 기반으로 한 부재 및 박판구조물의 모델링과 계산에 사용 유한요소 모델로부터 SFE를 바로 생성할 수 있는 도구 제공 VCS 3D 모델을 구성하는 모든 객체는 빔(beam)과 강체(rigid body)를 정의할 수 있는 노드(node)로 구성되며, 노드는 VCS 객체에 대한 공간 참조 point로 사용 노드 속성 : 형상(CoG, Origine), 질량(mass, Concentrated Mass) 및 관성(Concentrated Inertia, Principal Moments, Transformed Moments) SBE는 두개의 노드로 구성되고 2D 계산에서 사용된 단면 형상이 적용되며, 하나의 노드에 다수의 SBE가 연결될 수 있다. 또한 동적 해석(초기/구속 조건 등)을 위해 필요한 많은 데이터를 포함한다. 3차원 공간에서 구조물(부재, 어셈블리, 전체 차량)의 생성을 위해서는 Node, Beam, Rigid body 등이 사용되며, 매크로요소법에 기반한 SFE가 포함된 SBE의 생성으로 시작 다양한 충돌 하중조건에 대한 풀 카(full car)의 해석을 위해 VCS 전용 배리어가 제공 차량 충돌 설계를 위해 매크로요소법을 사용하는 데 있어 유한요소법 대비 주요 장벽은 구조물 조인트의 강성을 정확하게 모델링하는 것이다. VCS는 구조적 조인트에 대해 교차하는 하중 전달 빔의 기하학적 중심에서 연결되며, X, Y 및 Z 오프셋은 위치와 길이를 수정하기 위해 교차하는 빔의 시작과 끝에 적용할 수 있어 구조물의 실제 형상과 조인트의 강체 코어를 보다 사실적으로 근사화할 수 있다.   3D : Additional elements & Mass distribution 엔진 및 기어박스와 같이 충격 하중 동안 거의 변형되지 않는 부품은 강체로 모델링 강체를 생성하기 위해 부품의 무게 중심에 있는 노드가 정의되고 이 노드에 총 질량 및 관성 행렬(inertia matrix)이 할당 노드는 나머지 구조물에 직접 연결되는 반면, 여러 장착 위치의 경우 간단한 원형 단면을 갖는 SBE를 사용할 수 있음 3D 환경에서 생성된 각 객체의 질량 정보는 해당 요소가 정의된 노드에 위치하며, 추가 질량은 노드에 집중질량으로 정의하거나 정의된 질량/또는 밀도로 새로운 강체를 생성하여 추가   Initial & Boundary conditions 및 Contact settings 초기 및 경계조건(Kinematic Constraints-Angular Velocities & Linear Velocities, Concentrated Loadings- Forces & Moments)은 모두 노드에 정의 전체 모델이 구축되면 접촉을 정의하며, 접촉 정의에 필요한 부품의 부피를 나타내기 위해 질량이 없는 강체(sphere, cone, cylinder and box 형상)가 이 절점에서 생성되고, 모델의 형상에 따라 배치한 후 접촉 정의 - 전용 접촉 감지 루틴으로 물리적 접촉 메커니즘을 구현 변형체의 접촉 정의를 위해 변형가능 배리어(Deformable barrier) 툴 제공   Solution Settings Solution Explorer tree에서 자세한 솔루션 파라미터를 정의 : Attributes, Animation Progress, Time Stepping Routine, Fields and global parameters, Settings 및 Statistics section 특히, Statistics section은 모델 확인의 마지막 단계에서 유용하며, 모델의 요소 수, 질량 및 무게중심에 대한 정보 제공   Calculations & Animation 계산 프로세스는 Process Unit에서 한번의 클릭으로 진행되며, Process Unit 창에서 시각적으로 진행 상황을 모니터링 전체 차량 충돌 해석은 일반 데스크탑 PC/노트북에서 1분 내외로 계산이 완료되며, 다중 계산이 가능하여 계산시간 추가 단축 가능 계산 프로세스가 완료된 후 하중 조건에 따른 해석 결과를 애니메이션으로 확인할 수 있으며, SBE를 색깔 별로 간단히 구분하여 SBE의 순간 변형 상태를 쉽게 분석   Results : Chart Wizard 애니메이션과 함께 다양한 결과를 그래프로 생성하며, 사용자는 VCS 결과 파일 내에서 어느 객체든 선택 후 결과를 볼 수 있음 3D view에서 선택한 VCS 모델의 각 객체는 Selection Window에 자동으로 추가   VCS의 도입 효과 설계 초기 콘셉트 안으로 충돌 부재 단면 최적화가 가능하여 제품 개발 프로세스 촉진 장비 도입/운영 비용 절감 : 매크로 요소법에 기반한 빠른 계산으로 랩톱에서도 수초 또는 수분내에 계산이 가능 단순한 작업 환경에서 간편한 설계 변경이 가능하여, 해석 엔지니어가 아닌 설계 엔지니어도 쉽게 활용 가능   VCS의 주요 적용 분야 자동차 산업 및 조선산업 등에서 충돌하중을 받는 박판구조물의 설계, 해석 및 최적화 충돌/충격 부재의 단면 충돌 특성 평가/개선 및 최적화 컴포넌트(에너지 흡수 구조 부품, bumper back beam, FR Side 멤버, Fillar component 등)의 충돌 특성 평가 및 개선 부분 충돌 모델 및 풀 카 충돌 모델의 충돌 성능 평가 및 개선   ■ 기사 내용은 PDF로도 제공됩니다.
작성일 : 2024-02-01
구조 해석 및 설계 소프트웨어, STAAD
구조 해석 및 설계 소프트웨어, STAAD   주요 CAE 소프트웨어 소개   ■ 개발 : 벤틀리시스템즈, www.bentley.com ■ 자료 제공 : 벤틀리시스템즈코리아, 02-557-0555, www.bentley.com/ko   1. 적용 분야 STAAD는 3D 구조 해석 및 설계 소프트웨어로, 모든 크기 또는 유형의 구조에 대해 종합적인 해석 및 설계를 수행할 수 있다. 90여 개의 국제 설계 코드를 사용해 세계 어디서나 강철, 콘크리트, 목재, 알루미늄 및 냉간 성형 강 구조물을 설계할 수 있다. 2. 주요 특징  ■ 실제 모델을 해석 모델로 자동 변환해 워크 플로우를 간소화한다. ■ Bentley 데스크탑 및 클라우드 & 모바일 애플리케이션과의 광범위한 상호 운용을 통해 여러 분야의 팀 협력을 향상시킨다. ■ 물리적 멤버와 곡면을 완벽하게 통합해 콘크리트 및 강철 BIM 워크 플로우를 최적화한다. ■ STAAD 클라우드 서비스와 함께 다양한 대안을 실행하고 명확한 결과를 그래픽으로 비교한다. ■ 유한 요소 해석을 사용해 지진 발생 예측 지역 또는 일반 조건에 맞는 설계가 가능하다. ■ 모바일 장치에서 모든 크기의 모델을 확인하고 편집할 수 있다. 3. 주요 기능 ■ 중력 및 횡하중 해석: 사하중, 활하중과 같이 중력에 의해 유도되는 조건, 스킵 조건, 바람과 지진을 포함한 횡하중과 결합되는 조건 등 광범위한 하중 조건을 고려해 단순 또는 복합 구조물을 설계하고 해석한다. ■ 내진 요구 사항 준수: 지진력 저항 시스템을 설계 및 상세화하고 관련 건물 코드에 따른 지진 하중을 생성한다. 요소의 설계 및 해당되는 경우 프레임과 대규모 구조 시스템의 설계에서 이러한 힘을 고려한다. 요소 조합 및 상세화에서 선택한 설계 코드의 연성 요구 사항을 시행한다. ■ 구조 모델 설계 및 해석: 데크, 슬래브, 슬래브 모서리 및 구멍, 보, 기둥, 벽, 브레이스, 확장 및 연속 기초, 파일 캡을 포함하는 전체 구조를 신속하게 모델링한다. 시간이 소비되는 많은 설계 및 해석 작업을 효율성 있게 자동화하고 문서가 준비된 실용적인 시스템 및 구성 요소 설계를 생성한다. ■ 유한 요소를 사용한 설계 및 해석: 첨단 유한 요소 해석을 사용해 전체 구조를 위한 빌딩 해석, 설계, 제도를 정확하고 효율적으로 완료한다. 신속한 솔루션을 사용해 결과를 기다리는 데 소요되는 시간을 줄이거나 제거한다. ■ 보, 기둥 및 벽 설계: 중력과 횡하중에 대해 보, 기둥 및 벽을 최적화하거나 해석하여 신속하게 안전하고 경제적인 설계를 창출한다. 미국의 요구 사항과 많은 국제 설계 사양 및 건물 코드를 확실하게 준수하는 설계를 생성한다. ■ 냉간성형 강 부재 설계: 종합적인 냉간성형 강 라이브러리를 사용해 특수 애플리케이션을 사용할 필요 없이 경량형강 부재를 설계한다. ■ 횡저항 프레임 설계: 횡방향 지지 골조와 모멘트 골조에 미치는 지진 및 풍력에 대해 광범위한 건물 코드 확인을 수행한다. 모든 구조 프로젝트에서 안전하고 신뢰성 있는 설계를 신속하게 만든다. ■ 국제 설계 표준을 준수하는 설계: Bentley 설계 솔루션에 포함된 광범위한 국제 표준 및 사양을 통해 비즈니스 수행 범위를 확장시키고 글로벌 설계 기회를 활용한다. 국제 표준을 광범위하게 지원하기 때문에 정확하게 설계를 완성한다. ■ 설계 하중 및 하중 조합 생성: 기본 제공 하중 생성기를 사용해 규정된 코드의 바람 및 지진 하중을 구조물에 적용한다. 별도의 수동 계산이 필요 없이 구조 형상, 질량, 선택한 건물 코드 규정을 기반으로 관련 하중 파라미터를 자동으로 계산한다. 하중 조합 생성기를 사용해 이 횡하중 사례를 중력 및 다른 유형의 하중과 조합한다. ■ DXF에서 생성된 단면 형상 가져오기: DXF 도면에서 상세화 된 미터법 또는 영국식 단위의 맞춤 정의된 단면 프로필을 신속하게 가져온다. 또는 간단하게 치수를 입력하거나 광범위한 표준 라이브러리에서 선택하여 정규 형상을 정의한다. ■ 슬래브 및 기초 설계 통합: 마스터 해석 모델 내에 통합된 전용 애플리케이션을 사용해 슬래브 및 기초를 설계하고 설계 계산 및 보강 도면을 생성한다. ISM을 사용해 BIM 모델의 설계 정보를 추가한다. ■ 철골 접합부 설계 통합: 단일 통합 환경에서 구조 철골 접합부를 설계한다. 3D 해석에서 얻은 접합부 형상, 부재 사이즈, 접합부 힘 데이터를 철골 접합부 설계 애플리케이션으로 직접 전송한다. 이를 통해 정보를 효율적으로 재사용하고 구조가 변경될 때 필요한 재작업량을 줄일 수 있다. ■ 섹션별 속성 보고서 생성: 섹션별 속성을 신속하게 계산하고 맞춤 섹션 프로필에 대한 세부 보고서를 간편하게 생성한다. ■ 구조 설계 문서 생성: 설계 의도를 전달하는데 필요한 평면도와 입면도를 포함하는 구조 설계 문서를 자동으로 생성한다. 문서는 3D 모델 변경에 따라 자동으로 업데이트 된다. ■ 구조 모델 공유: 하나의 애플리케이션에서 다른 애플리케이션으로 구조 모델 형상과 설계 결과를 전달하고 시간 경과에 따른 변경 사항을 동기화한다. 구조 모델, 도면 및 정보를 검토를 위해 전체 팀과 신속하게 공유한다. ■ 국제 단면 프로필 활용: 추가 요금 없이 포함된 광범위한 국제 단면 프로필 데이터베이스를 사용해 구조 모델을 완성한다. 전세계 글로벌 설계 기회를 활용한다. 4. 도입 효과 90개가 넘는 국제 설계 코드를 사용해 세계 어디서나 강철, 콘크리트, 목재, 알루미늄 및 냉간 성형 강 구조물을 설계할 수 있다. 간소화된 워크플로우로 중복되는 수고를 덜고 오류를 제거하여 설계 생산성을 향상시킬 수 있고, 클라우드 & 모바일 애플리케이션과의 광범위한 상호 운용을 통해 여러 분야의 팀 협력을 향상시킨다.  5. 주요 고객 사이트 현대엔지니어링, 현대건설, GS건설, SK 건설, 삼성엔지니어링, 대림산업, 현대중공업, 삼성중공업 외 다수   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2024-01-06
프론트 라이트 스캔 데이터의 역설계 작업 과정
포인트셰이프 디자인을 사용한 역설계 사례   포인트셰이프 디자인(PointShape Design)은 드림티엔에스에서 자체 개발한 3D CAD 기반의 역설계 소프트웨어로 CGM(CATIA) 커널이 적용되었으며, 사용자에게 친숙한 디자인 프로세스 및 사용자 인터페이스를 제공한다. 이번 호에서는 포인트셰이프 디자인을 활용해 프론트 라이트 부품의 3D CAD 모델을 쉽게 생성하는 방법에 대해 소개한다.   ■ 자료 제공 : 드림티엔에스, www.pointshape.com   이번 호에서 소개할 역설계 프로세스는 다음과 같다. 스캔 데이터 불러오기 및 정렬 스캔 데이터 단면 추출 및 스케치 모델링 툴과 편집 툴을 사용하여 3D 모델 작업  Analyzing 기능을 통한 설계 데이터 편차 확인  최종 설계 데이터 완성    스캔 데이터 불러오기 및 정렬(Import & Alignment) 3D 스캐너를 통해 취득한 스캔 데이터를 <그림 1>과 같이 프로그램에서 불러온다.  스캔 데이터의 좌표 정렬 상태는 스캔 당시 스캐너의 좌표를 기준으로 정렬되어 있는 상대좌표 상태이기 때문에, 스캔 데이터를 절대 좌표에 정렬한 후 역설계를 진행한다. 3-2-1 Alignment 기능을 사용하여 좌표 정렬할 스캔 데이터를 선택하고 평면, 벡터, 점을 순서대로 선택하여 스캔 데이터를 절대 좌표에 정렬한다.   그림 1   그림 2   스캔 데이터 단면 추출 및 스케치(Plane(Offset) - 2D Sketch) Ref. Plane의 오프셋(Offset) 기능을 사용하여 해당 위치에 2개의 평면을 생성한 후, 해당 평면을 스케치 평면으로 사용하여 단면 폴리라인(Polyline)을 각각 추출하고 추출된 단면 폴리라인을 따라 스케치한다. 스케치를 한 후 트림(Trim)을 하고 필렛(Fillet) 기능을 이용하여 라인을 다듬는다.    그림 3   그림 4   모델링 툴을 사용하여 3D 모델 작업 해당 부분을 스케치한 후 <그림 5~6>과 같이 익스트루드(Extrude) 기능을 사용하여 형상을 만든다.    그림 5   그림 6   스케치를 통해 해당 평면을 생성하고 폴리라인을 따라 스케치를 한 후, 트림 기능을 사용하여 라인을 다듬고 익스트루드 기능을 사용하여 형상을 만든다.      ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-01-04
교량 설계, 모델링 및 해석 소프트웨어, OpenBridge 
  교량 설계, 모델링 및 해석 소프트웨어, OpenBridge    주요 CAE 소프트웨어 소개   ■ 개발 : 벤틀리시스템즈, www.bentley.com ■ 자료 제공 : 벤틀리시스템즈코리아, 02-557-0555, www.bentley.com/ko   1. 적용 분야 OpenBridge(오픈브리지)는 교량 설계, 모델링 및 해석 소프트웨어로, 강철 및 콘크리트 교량의 수명 주기 전체에서 사용할 수 있는 상호 운용 가능한 물리적 모델 및 해석 모델을 생성한다. 2. 주요 특징  모델링, 해석 및 설계를 하나의 종합 교량 솔루션으로 해결할 수 있습니다. 콘크리트 및 강철 교량 모두를 위한 설계 및 시공 필요 사항을 충족한다. 3. 주요 기능 ■ 교통량 하중 해석 및 평가: 도구 세트를 사용하여 기존 및 신설 교량에 대한 교량 모델링, 해석, 하중 평가를 간소화한다. 검증을 위해 다양한 국제 설계 코드 사양과 평가 방법을 활용한다. ■ 도로 형상 및 지형 포착: GEOPAK, Bentley InRoads 또는 MXROAD와 같은 Bentley 도로 관련 제품에서 직접 얻은 토목 데이터를 재사용하고, LandXML 파일에서 도로 정보 및 지상 데이터를 가져온다. ■ 다분야 교량 팀과의 업무 조정: 교량 형상, 재료, 하중, 프리스트레싱 강연선 패턴 및 전단 철근을 포함한 프로젝트 정보를 교환하여 의사 결정을 개선한다. 실시간 협업으로 엔지니어링 컨텐츠 관리를 간소화하고 교량 라이프사이클 동안 데이터를 공유 및 재사용하고 용도를 재설정하여 설계 오류 및 시공 사안의 위험성을 최소화한다. ■ 콘크리트 교량 설계 및 해석: 프리캐스트, 현장 콘크리트, 철근 콘크리트, 포스트텐션을 포함한 모든 유형의 콘크리트 교량을 설계하고 해석한다. 데이터를 스마트하게 관리하고 파라메트릭 방식으로 모델링하며 도면 생성을 자동화하여 교량 납품 프로세스에 혁신적인 변화를 일으킨다. ■ 강교 설계 및 해석: 여러 국제 설계 표준(RM Bridge)과 AASHTO LRFD 표준 사양(LEAP Bridge Steel)을 따라 강교를 모델링, 설계, 해석 및 평가한다. ■ 교량 프로젝트 성과품 생성: 세부 보고서를 생성한다. 단면도, 입면도, 평면도를 위한 3D 모델과 2D 도면을 생성한다. ■ 상세화 소프트웨어와의 상호 운용성: ProStructures에 연결하여 바 마크, 일정, 수량, 도면을 포함한 세부 보강근 설계를 개발한다. ■ 교량 프로젝트 변경 사항 관리: 지능형 교량 모델을 수월하게 업데이트하고 기본 제공되는 교량 구성 요소 간의 파라메트릭 관계를 활용하여 프로젝트 변경 사항에 대응한다. ■ 교량 충돌 탐지 수행: 기존 인프라와 교량 구조물의 충돌 해석을 수행하여 위험을 완화하고 시간을 절약하며 빌딩 오류를 제거하고 프로젝트 비용을 절감시킨다. 3D 또는 표 형식으로 충돌을 확인할 수 있습니다. 콘크리트 철근 및 다른 매립물과의 충돌을 탐지하고 인접 구조물과 도로 간의 필수 최소 간격을 확인할 수 있다. ■ i-model 사용: i-model을 사용하여 프로젝트 모델과 정보를 교환할 수 있습니다. i-model을 사용하면 정보 공유, 배포 및 설계 검토를 위한 특별하고 강력한 워크플로우가 구현 가능하다. 이 워크플로우는 ProjectWise 및 i-model의 강력한 기능을 활용하는 다른 제품과 서비스를 사용하여 더욱 기능을 강화할 수 있다. ■ 시공 순서 및 단계 조정: 단계별 시공에서 각 단계를 조사한다. 즉 결과를 비교하고 관련 단계를 탐지하며 증명 확인을 위한 결과 포락선을 생성한다. 시공을 시작하기 전에 크리프, 수축 및 이완을 검토하고 문제를 해결할 수 있다. ■ 교량 설계 시각화 작업: 교량 상부구조와 하부구조의 즉각적인 3D 시각화를 경험할 수 있습니다. 설계를 시각화하고 작업하는 모델링 입력을 신속하게 검증한다. 불투명 및 투명 보기 옵션을 사용하여 종단면, 입면, 횡단면을 확인함으로써 복잡한 형상 영역을 탐색할 수 있다. 4. 도입 효과 모든 브리지 설계 프로젝트의 시작부터 끝까지 하나의 종합 패키지로 사용할 수 있다. 하나의 솔루션을 사용하여 교량 수명 주기 내내 사용할 수 있는 강철 및 콘크리트 교량 모두에 대해 상호 운용 가능한 물리적 모델 및 해석 모델을 만들 수 있다. 5. 주요 고객 사이트 GS건설, 삼성물산, 현대건설, 경동엔지니어링, 제일 엔지니어링 외 다수   좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-27
구조 해석 소프트웨어, MSC Nastran
구조 해석 소프트웨어, MSC Nastran   주요 CAE 소프트웨어 소개    ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr     MSC Nastran은 세계 최초의 FEA 구조 해석 코드로 오늘날에도 다양한 산업 및 응용분야에서 자리잡고 있다. 다분야 구조 해석 솔루션으로서 자동화된 구조 최적화와 함께 선형 및 비선형 영역의 정적, 동적, 열 해석과 내장된 피로 해석 기술을 고성능 컴퓨팅을 통해 구현한다. MSC Nastran 은 업계에서 신뢰받고 있는 솔루션으로 일관되고 정확한 결과를 제공한다. 엔지니어들은 MSC Nastran을 사용하여 ‘항상 올바른 결과’를 얻을 수 있다. 제조업체는 제품 개발 프로세스의 다양한 시점에서 구조 해석에 대한 MSC Nastran의 고유한 다분야 접근 방식을 활용한다. MSC Nastran은 다음과 같이 사용된다. ■ 설계 프로세스 초기에 기존 물리적 프로토타입 대신 가상 프로토타입의 사용으로 비용 절감 ■ 제품 서비스 중 발생할 수 있는 구조적 문제 해결, 서비스 중단 시간 및 비용 절감 ■ 기존 설계의 성능을 최적화하거나 제품의 차별화 요소를 개발하여 경쟁업체 대비 업계 우위 확보 MSC Nastran은 정교한 수치 기법 기반의 뛰어난 유한요소 해석 솔루션이다. 비선형 유한요소 문제들은 내장된 implicit 또는 explicit 수치 기법을 통해 해결할 수 있다. 1. MSC Nastran의 장점 ■ 다분야 구조 해석 : 종합적인 수준의 엔지니어링 해석 기능을 구축하기 위해서는 여러 소프트웨어 솔루션을 도입해야 하며 사용자는 각각의 새로운 도구에 대한 교육을 받아야 한다. MSC Nastran은 여러 분야에 대한 해석 기능을 갖추고 있어 하나의 구조 해석 솔루션으로 다양한 엔지니어링 문제를 해결할 수 있다. ■ 구조 어셈블리 모델링 : 하나의 구조 부재만으로 해석되는 경우는 거의 없다. 구조 시스템은 수많은 요소로 구성되며 전체 모델로 해석되어야 한다. MSC Nastran은 시스템 수준의 구조 해석을 위해 여러 구성 요소를 결합하는 다양한 방법을 제공한다.  ■ 자동화된 구조 최적화 : 설계 최적화는 제품 개발 과정에서 중요한 요소지만 반복적인 많은 수작업을 요구한다. MSC Nastran은 허용된 설계 영역에서 최적의 구성을 자동으로 찾는 최적화 알고리즘을 제공한다. 2. 적용 효과  (1) 다분야 구조 해석  다양한 업체의 여러 구조 해석 소프트웨어를 사용할 필요 없이 단일 플랫폼에서 정적 및 동적(NVH와 소음 포함), 열, 좌굴 분야에 대한 선형 또는 비선형 해석을 수행할 수 있다. 내장된 피로해석 기술을 통해 피로 해석을 수행하여 피로 수명을 결정하기 위한 시간을 대폭 절감할 수 있다. Digimat과 Mean-field Homogenization 커플링을 위한 사용자 정의 서비스와 내장된 점진적 파손 해석을 통해 최신 복합재와 섬유 강화 플라스틱의 거동을 평가한다.       (2) 구조 어셈블리 모델링  메시를 연결하는데 많은 시간이 소요되었던 기존 방식에서 불일치하는 메시를 Permanent Glue를 통해 신속하게 연결할 수 있다. 특수 커넥터 요소를 통해 용접 또는 패스너로 구성된 어셈블리를 빠른 시간 내에 구성할 수 있다. Superelement를 사용하여 대형 어셈블리의 재해석을 빠르게 수행하고 선택적으로 설계 정보의 보안을 유지하면서 Superelement들을 다른 제조업체와 공유한다. 여러 파트로 구성된 어셈블리 설계에서 contact 해석을 수행하고 contact 응력과 영역을 결정할 수 있다.  (3) 자동화된 구조 최적화  재료 물성, 형상 치수, 하중 등과 같은 다양한 설계 변수들로 응력, 질량, 내구 수명 등에 대해 최적화를 지원한다. 형상 최적화를 통해 구조 멤버의 단면 형태나 형상을 개선한다. Topometry 최적화를 통해 복합재 적층 판의 최적 두께를 찾는다. Topography 최적화를 통해 판금 부품에 대한 최적의 비드 또는 스탬프 패턴을 결정한다. 위상 최적화를 통해 과다 또는 불필요한 볼륨을 제거하여 최적 형상을 결정한다. 다중 모델(Multi Model) 최적화를 통해 여러 수준 또는 여러 분야의 모델들에 대한 최적화를 한 번에 수행한다.   
작성일 : 2023-12-25
제너레이티브 설계 솔루션, MSC Apex
제너레이티브 설계 솔루션, MSC Apex   주요 CAE 소프트웨어 소개    ■ 개발 : MSC Software, www.mscsoftware.com/kr ■ 자료 제공 : 한국엠에스씨소프트웨어, 031-719-4466, www.mscsoftware.com/kr 1. MSC Apex Generative Design - 자동화된 경량 설계 최적화 MSC Apex(에이펙스) Generative Design은 직관적인 CAE 환경, MSC Apex를 기반으로 제작된 완전 자동화된 제너레이티브 설계 솔루션이다. 이 제품은 기본적으로 혁신적인 제너레이티브 설계 엔진을 사용하고 있으며, 또한 MSC Apex의 사용하기 쉽고 배우기 쉬운 기능을 활용한다. 따라서 설계 최적화 워크플로에 필요한 노력과 비용을 크게 줄일 수 있다. MSC Apex Generative Design은 적층 공정으로만 제조할 수 있는 세밀하고 매우 복잡한 구조를 생성하도록 특별히 개발되었다. 혁신적인 응력 기반 알고리즘은 무게를 최소화하고 기존의 사고방식으로는 상상할 수 없는 독특한 형상을 안정적으로 이끌어낼 수 있다. ■ 편리하고 쉬운 사용법 : 사용자 중심 소프트웨어 디자인을 통해 별도의 전문 지식 없이도 최적화를 쉽게 수행할 수 있다. ■ 자동화된 디자인 : 무게는 최소화하면서 디자인 기준을 모두 만족하는 여러 개의 디자인 후보를 자동으로 생성할 수 있다 ■ 가져오기 및 검증 : 단일 CAE 환경에서 기존 형상 또는 메시를 가져와서 최적화된 디자인 후보를 찾고, 디자인 검증을 수행할 수 있다. ■ 직접 출력 : 수동 재작업 없이 직접 제조하여 즉시 사용할 수 있는 형상을 내보낼 수 있다. ■ 단일 프로세스 : Simufact Additive 또는 Digimat AM으로 결과 형상을 가져와서 모든 부품에 대해 비용 효율적이며 최초의 적정한 결과를 얻을 수 있다. (1) 주요 기능  ■ CAD 파일 불러오기  ■ 다양한 설계 형상 제공  ■ 선형 해석의 하중 케이스를 이용한 자동화된 최적화 프로세스  ■ 정확하고 부드러운 표면으로의 효율적 전환 & 스트럿 및 쉘 구조 요소 사이에 완벽한 전환  ■ 응력 기반 알고리즘을 통한 많은 무게 감소  ■ 짧은 시간 안에 다양한 설계 형상을 제공하는 제너레이티브 디자인 연구  ■ CPU, Nvidia GPU를 이용한 해석 기능과 Windows & Linux 환경에서의 원격 작업  ■ 로컬 좌표계, 압력, 중력 고려  (2) 적용 효과  ■ 수동 작업이 필요하지 않은 새롭고 혁신적인 설계 구조  ■ 별도의 사용법을 배우지 않아도 사용하기 쉬운 소프트웨어  ■ 효율적이고 혁신적인 제품 설계를 통한 비용 절감  ■ 최적화 설정을 토대로 여러 개의 설계 후보 생성  ■ 실현 가능한 부품 설계 생성  ■ 적층 제조 생산에 적합  ■ 기계적 무결성 및 제조 능력 검증을 위한 상호 호환성  ■ 유기 형태의 설계를 통한 경량화 및 생산 및 운영 비용 절감 2. MSC Apex | Modeler - 직접 모델링, CAD&메시 솔루션 MSC Apex Modeler는 CAD 형상 정리, 메시 생성, 물성 및 하중 부여 작업의 워크플로를 간소화고 CAE에 특화된 직접 모델링이 가능한 CAD와 메시가 상호 작용하는 솔루션이다 ■ 스마트 도구 : MSC Apex는 매우 빠르고 효율적인 방식으로 CAD 형상 정리를 수행할 수 있는 직접 모델링 도구를 제공한다. 형상 수정이 필요한 대상을 선택하고 마우스를 이용해서 밀거나 당기거나 드래그하여 수정할 수 있다. 이러한 도구를 통해 사용자는 CAD를 정리할 수 있으며, 작업량을 10분의 1까지 줄일 수 있다. ■ 제품 워크플로 : MSC Apex는 스마트한 FEA/CAE 워크플로를 목표로 설계되었다. 대표적인 예로 3D 모델을 2D 모델로 빠르게 만들어주는 미드 서피스 추출 기능이 있다. 사용자는 MSC Apex에서 제공하는 워크플로를 통해 일반적인 CAD에서 해석이 가능한 FEA 모델까지 10배 이상의 생산성을 높일 수 있다. ■ 기반 기술 : MSC Apex는 제너레이티브 프레임워크를 통해서 CAD와 해석 데이터 간의 완전한 연관성을 가능하게 한다. 어셈블리 모델의 경우 일부 파트 변경이나, CAE 모델을 수정할 경우에 유용하다. 상위 모델이 수정되면 메시, 물성, 하중 등을 포함하여 수정된 사항이 하위 모델에 자동으로 동기화된다. 이러한 직접 모델링은 사용자에게 많은 이점을 제공한다. ■ 사용하기 쉽고 배우기 쉬움 : MSC Apex는 다양한 목적의 도구를 쉽게 사용할 수 있도록 설계되었다. 설치 시 내장된 튜토리얼, 비디오 기반 문서, 마우스 커서에 자동으로 나타나는 사용 방법과 같은 다양한 학습 도구를 제공한다 (1) 주요 기능 1) 스케치 ■ 선, 사각형, 원, 타원, Fillet, Chamfer 그리고 복잡한 형상을 스케치 평면 위에 직접 스케치 ■ 기존 스케치의 형상을 Project, split, 수정 가능 2) CAD 수정 ■ 점이나 선을 마우스 드래그를 이용해서 서피스 수정(Vertex/Edge drag) ■ 서피스를 마우스 드래그를 이용해서 솔리드 형상의 수정(Push/Pull) ■ 서피스의 자르기(Split), 채우기(Fill) ■ 메시에 영향을 주는 점을 추가/삭제, 선(curve)을 억제/억제 해제 ■ 어셈블리에서 특정 파트만 교체 가능(Part Replace) 2) 미드 서피스 생성 및 수정 ■ 오프셋 옵션(자동, 일정한 두께, 사용자 입력 등)에 따라 미드 서피스 추출 ■ 평면 또는 곡면 솔리드의 균일 또는 불균일한 두께의 중간면을 점진적으로 생성(Incremental mid-surface) ■ FEA 모델로부터 CAD 생성 ■ FEA 모델로부터 Facet 형상과 Nurbs 형상 생성, 수정, remesh ■ 일부 FEA만 Facet 형상 생성 후에 메시 수정하면 기존 FEA의 물성, 두께, connector 등도 자동 업데이트 ■ 2D, 3D FEA 모델로부터 2D, 3D CAD 생성 ■ 생성된 CAD 내보내기 가능 3) 메시 및 메시 수정 ■ curve, surface, solid에 메시 ■ Beam, Quad, Tria, Tet, Hex 메시 ■ CAD가 수정될 때 자동으로 메시 재 생성  ■ Feature Base Meshing, mesh Seeding, mesh control curve를 통한 메시 개선 ■ 부품 연결을 용이하게 하는 Hard Point ■ 다양한 map mesh 옵션 ■ 시각적인 element quality 확인 및 편리한 수정 4) 모델 특성 ■ 물성 생성 및 할당 ■ 자동 두께 할당(균일하지 않은 단면 및 오프셋 특성 고려 가능) ■ 부품 연결 : 접촉(Mesh Independent Die), RBE2/RBE3 요소(Discrete Tie)  ■ 중력, 하중, 강제 변위, 구속, 압력 하중  5) MSC Nastran과 상호 운용성 ■ MSC Nastran 데이터(bdf,op2,h5) 지원, 가져오기 및 내보내기  ■ Adams/Car 모델 및 결과 데이터 확인 가능  ■ 단일 환경에서 Adams/Car 결과 데이터를 구조 FEA 모델에 연결 및 하중 매핑 가능 6) 후처리  ■ 이미지 캡처/동영상 녹화 기능 포함 ■ 멀티뷰를 통한 결과 탐색 환경 지원 7) Python 기반의 API를 통한 자동화 ■ 반복적인 작업을 자동화하고 사내 워크플로를 개발할 수 있는 사용자 정의 도구 ■ 완벽한 통합 개발 환경(IDE) 지원 ■ 코딩 없이 Micro Record/Play로 간편한 사용 3. MSC Apex | Structures - Computational parts 기반의 구조 해석 MSC Apex Structures는 유한 요소 해석 솔버가 통합된 모듈로 사용자에게 선형(비선형 기능 지원 예정) 구조 해석에 대한 접근을 제공한다. 현재 MSC Apex는 선형 정적, 선형 좌굴, 노말 모드 및 주파수 응답 해석을 포함한 4가지 유형의 선형 해석을 지원한다. MSC Apex Structures는 시나리오 정의, 해석 준비 상태 확인 및 통합 솔버를 위한 직관적인 사용자 인터페이스가 포함된 패키지이다. 사용자 인터페이스와 솔버의 통합은 사용자에게 FEA 모델을 대화식으로 그리고 점진적으로 검증하고 해결할 수 있는 고유한 기능을 제공한다. 이 점진적인 검증 및 해석은 전처리/후처리 프로세스와 솔버가 분리되어 매우 시간이 많이 소요되는 기존 FEA 워크플로에 대한 창의적이고 지능적인 방식의 변화이다. MSC Apex - MSC Nastran - MSC Apex의 워크플로를 지속적으로 확장하여 사용자는 다양한 설계 단계 및 작업에 따라 최상의 시나리오를 선택할 수 있다. ■ 시나리오 1 - MSC Nastran 솔버 사용 : 기존의 MSC Nastran 솔버 사용자는 MSC Nastran 솔버를 사용한다. ■ 시나리오 2 - MSC Nastran 솔버를 지원하는 내장된 MSC Apex Structures : 통합된 솔버는 해석 사전 검증 기능을 이용해서 FEA 모델을 생성한다. 생성된 FEA 모델을 MSC Nastran으로 외부에서 해석할 수 있으며 MSC Apex를 통해서 후처리 작업이 가능하다. ■ 시나리오 3 - 내장된 MSC Apex Structures 솔버 사용 : 내장된 MSC Apex 솔버의 모든 기능을 할 수 있다.
작성일 : 2023-12-25
구조/충돌/진동소음/내구 해석, MeshWorks
  주요 CAE 소프트웨어 소개   ■ 개발 및 자료 제공 : DEP, 02-3446-9220, www.depusa.com   DEP의 MeshWorks(메시웍스) 소프트웨어는 국내 뿐 아니라 지엠, 포드, 크라이슬러와 캐터필러, 유럽의 마세라티, 메르세데스, 르노, 푸조, 일본 토요타, 혼다, 이스즈, 아이신, 인도의 타타, 마힌드라, 중국의 베이징자동차, 창안포드등 글로벌 OEM에서 사용되고 있다. 다중 최적화를 통한 기존 차량의 중량 절감 뿐 아니라 신규 차종의 개발 단계를 혁신적으로 단축함으로써 비용과 시간에서 많은 효과를 입증하고 있다. MeshWorks에는 4개의 코어 모델러, 즉 Parametric, Integrated, Automated 및 Associative modeler가 있으며, 그 특징은 다음과 같다. ■ Parametric modeler : 메시웍스에서 생성된 CAE 모델에서 파라미터 모델을 별도의 공정 없이 DEP의 특허 기술인 feature 인식 기술과 사용자 템플릿을 조합하여 파라미터 자동 생성이 가능하다. 이를 통해 추가적 모델링 부분에 대한 공수 절감이 가능하다. ■ Integrated modeler : 하나의 캐드 모델로 충돌, 내구, NVH 등 성능별 해석 모델을 동시에 생성 가능하며, 모든 해석 속성은 동시에 자동 업데이트되어 통합 모델 이용 시 해석공수 절감 및 다중 최적화에 응용에 용이하다.  ■ Automated modeler : 비전문 프로그래머도 반복적인 CAE 프로세스를 손쉽게 자동화할 수 있는 툴로서, 모델과 독립적으로 GUI를 이용하여 전체 워크플로에 통합시킬 수 있다. ■ Associative modeler : CAD와 CAE 데이터간의 긴밀한 결합성을 양방향으로 보장한다.  도면 업데이트 시 접촉, 하중, 경계조건 등 해석조건이 업데이트되고, 마찬가지로 메시가 모핑되면 CAD도 따라서 업데이트된다.   이러한 코어 모델러를 기반으로, MeshWorks는 그림과 같이 다양한 기능으로 구성되어 있으며, 이는 제품개발 주기 단축 및 표준 템플릿 활용으로 균일한 해석결과를 도출할 수 있게 한다.   1. 모핑 & 파라메터라이제이션 MeshWorks의 모핑 & 파라메터라이제이션 기능은 기존 FE/CFD 모델을 신규 형상에 맞게 신속하게 변형할 수 있는 Crtl Block 모핑, Freefrom 모핑, Curve based 모핑 등 여러 모핑 기법을 지원한다. 또한 파라미터 기능 및 auto DOE 기능을 활용하여 다중 최적화를 효과적으로 수행할 수 있다.   2. ConceptWorks ConceptWorks는 도면부재 시 개념설계 초기 단계에 신속한 신규 멤버 생성 및 기존 멤버 변경을 위한 기능을 추가하여, 세단에서 SUV 개조 혹은 엔진 차량을 친환경차로 개조하는 데에 유용하게 쓰인다.                       3. 모델 어셈블리                      모델 어셈블리 기능은 오토 점용접, SEAM 용접, 접착제 접착과 볼트 생성을 지원하며 특정 부품의 교체도 간편하게 수행할수 있다. 이 경우, 접촉과 리지드 정보는 자동적으로 업데이트될 뿐 아니라 솔버 데크도 변환된다.  4. Tetra/Hex 메시 또다른 메시웍스의 특장점은 고도로 자동화된 Tetra/Hex 메시 기능이다. 테트라 메시는 자동화된 템플릿 기반으로 고품질의 메시를 생성할 수 있으며 필렛, 튜브등 여러 요소들을 인식할 수 있고, 요소 제거 기능도 있다. Auto-Hexa 메시를 사용하면 한번의 버튼 조작으로 복잡한 형상의 고품질 Hexa 메시가 가능하며 시트폼, 범퍼폼, 캘리퍼 등에 쓰인다. Extrude Hexa는 주로 로터, 하우징 등에 사용된다. 5. CAD Morphing DEP의 특허 기술로 개발된 CAD 모핑은 캐드 데이터 모핑을 수행하는 기능이다. 완성차와 서브시스템에 적용할 경우 모핑된 캐드 모델은 높은 정밀도를 유지하며, 신속한 도면변경이 가능하다.  CAD 모핑 활용이 유용한 주요 3가지 경우는 아래와 같다.  ■ 개념설계에 신규 스타일링 데이터를 타깃으로 도면 모핑 가능 ■ 기존 도면에 신규 단면 정보를 반영하여 신규 도면 자동 업데이트 가능 ■ 기존 도면에 최적화 해석 결과를 반영한 도면 업데이트 가능   6. 디자인 어드바이저 디자인 어드바이저는 머신러닝과 AI 기술이 접목된 새로운 기능으로, 사용자가 형상 변경과 파라미터라이제이션을 진행하면서 해석 특성과 성능을 직관적으로 확인할 수 있도록 즉각적으로 변형값을 계산해서 화면에 표시한다.  BIW의 개념설계 단계에서 효용성이 매우 크며, 3D 캐드와 mid-mesh를 포함, 캐드-메시 비교를 통해서 기존 메시를 최대한 재사용할 수 있다.  메시웍스는 다양한 캐드, 해석 및 최적화 소프트웨어와 연계되어 글로벌 자동차 OEM과 중장비 업체에서 제품 품질 개선, 중량 절감, 신제품 개발 등 다양한 목적으로 사용되고 있다.     좀더 자세한 내용은 'CAE가이드 V1'에서 확인할 수 있습니다. 상세 기사 보러 가기 
작성일 : 2023-12-25