• 회원가입
  • |
  • 로그인
  • |
  • 장바구니
  • News
    뉴스 신제품 신간 Culture & Life
  • 강좌/특집
    특집 강좌 자료창고 갤러리
  • 리뷰
    리뷰
  • 매거진
    목차 및 부록보기 잡지 세션별 성격 뉴스레터 정기구독안내 정기구독하기 단행본 및 기타 구입
  • 행사/이벤트
    행사 전체보기 캐드앤그래픽스 행사
  • CNG TV
    방송리스트 방송 다시보기 공지사항
  • 커뮤니티
    업체홍보 공지사항 설문조사 자유게시판 Q&A게시판 구인구직/학원소식
  • 디렉토리
    디렉토리 전체보기 소프트웨어 공급업체 하드웨어 공급업체 기계관련 서비스 건축관련 업체 및 서비스 교육기관/학원 관련DB 추천 사이트
  • 회사소개
    회사소개 회사연혁 출판사업부 광고안내 제휴 및 협력제안 회사조직 및 연락처 오시는길
  • 고객지원센터
    고객지원 Q&A 이메일 문의 기사제보 및 기고 개인정보 취급방침 기타 결제 업체등록결제
  • 쇼핑몰
통합검색 "모델링"에 대한 통합 검색 내용이 5,452개 있습니다
원하시는 검색 결과가 잘 나타나지 않을 때는 홈페이지의 해당 게시판 하단의 검색을 이용하시거나 구글 사이트 맞춤 검색 을 이용해 보시기 바랍니다.
CNG TV 방송 내용은 검색 속도 관계로 캐드앤그래픽스 전체 검색에서는 지원되지 않으므로 해당 게시판에서 직접 검색하시기 바랍니다
앤시스, ‘옵틱스 테크 서밋 2024’에서 광학 시뮬레이션 및 설계 소프트웨어 소개
앤시스코리아는 5월 29일 수원 컨벤션센터에서 ‘앤시스 옵틱스 테크 서밋(Ansys Optics Tech Summit) 2024’를 개최한다고 밝혔다. 이번 행사는 갈수록 그 중요도가 증대함과 동시에 하루가 다르게 급변하고 있는 광학 산업 내에서 제품 개발 가속화에 기여할 수 있는 앤시스의 광학 솔루션에 대한 유용한 정보와 인사이트를 공유하기 위해 마련됐다. 앤시스코리아는 올해로 세 번째를 맞이한 이번 행사에서 자동차, 하이테크, 항공우주 및 방위, 멀티피직스 등 다양한 최신 산업 현황 및 사례와 함께 앤시스의 주요 광학 시뮬레이션 및 설계 소프트웨어인 ▲앤시스 루메리컬(Ansys Lumerical) ▲앤시스 지맥스(Ansys Zemax) ▲앤시스 스피오스(Ansys Speos)를 소개할 예정이다.     앤시스 광학 솔루션은 고급 물리 솔버 제품군을 통해 나노 규모에서 매크로 규모까지 정밀한 다중규모 시스템 설계를 지원하는 사용자 친화적인 워크플로를 제공하여 다양한 산업에서 애플리케이션을 설계할 수 있도록 지원하고 있다. 다중물리 광자 모델링 솔루션인 앤시스 루메리컬은 광학, 전기, 열 현상의 상호 작용을 고려한 포토닉스 모델링 소프트웨어로, 설계자가 어려운 포토닉스 문제를 효과적으로 모델링할 수 있게 돕는다. 또한, 제품군 간의 유연한 상호 운용성을 통해 다중물리 시뮬레이션, 시스템 레벨의 광집적회로 시뮬레이션, 파이썬(Python) 기반의 자동화와 포토닉스 파운드리를 위한 컴팩트 모델 라이브러리(CML)를 지원한다. 광학 부품 모델링 솔루션인 앤시스 지맥스는 광학 산업 전반의 선도 기업과 전 세계 대학의 광학, 조명 및 레이저 시스템 설계를 위한 표준 소프트웨어다. 결상, 조명, 레이저 시스템 광학계를 하나의 시스템으로 제공할 수 있는 솔루션으로 다중물리 시뮬레이션 지원, 실제 광학 시스템 제조를 위한 설계 및 회절 광학 통합을 위한 포괄적인 기능을 제공한다. 또한 광학 설계의 시뮬레이션, 최적화 및 공차 분석을 모두 수행할 수 있다. 시스템 설계 및 검증 솔루션인 앤시스 스피오스는 국제조명위원회(CIE)의 CIE 171:2006 테스트를 통해 정확성을 인증 받은 광학 설계 소프트웨어로, 시스템의 광 전파 설계 및 측정에 주로 사용된다. 가시광선, 자외선 및 원적외선 스펙트럼 영역까지 분석이 가능하며 조도 및 광학 성능을 예측해 프로토타입 제작 시간과 비용을 절감한다. 이외에도 직관적이고 포괄적인 사용자 인터페이스를 제공하며, GPU를 사용한 시뮬레이션 미리 보기와 앤시스 다중물리 에코시스템에 대한 간편한 액세스를 통해 생산성을 높일 수 있다. 앤시스코리아의 박주일 대표는 “앤시스코리아는 광기술의 발전과 광학 엔지니어를 위한 정확하고 고성능의 광학 설계 및 시뮬레이션 기능을 제공하기 위해 계속해서 혁신의 한계를 뛰어넘고 있다”면서, “이번 행사는 다양한 분야 간 융합의 핵심으로서 광기술의 중요성을 확인하는 시간이 될 것으로 기대한다”고 밝혔다.
작성일 : 2024-05-22
오토데스크, 생성형 AI로 가능적인 3D 형상 만드는 ‘프로젝트 베르니니’ 소개
오토데스크가 3D 모델링을 위한 실험적 생성형 AI 모델인 ‘프로젝트 베르니니(Project Bernini)’를 공개했다. 디자인 및 제조 산업에서는 3D 모델링의 정확성과 생산성이 중요하다. 건축가, 엔지니어, 제조업체, 영화 제작자 등 다양한 분야에서 디지털 디자인의 기하학적 제어와 정확성은 최종 제품의 성공에 중요한 요소이다. 한 개의 2D 이미지, 객체의 다양한 뷰를 보여주는 여러 개의 이미지, 포인트 클라우드, 복셀(voxels), 텍스트 등 다양한 입력 데이터에서 3D 형상을 빠르게 생성하는 베르니니의 첫 번째 모델은 전문적인 기하학적 워크플로에 맞춰져 있으며, 주어진 입력 데이터에서 3D 모양의 다양한 기능적 변형을 생성할 수 있다. 건축, 제품 디자인, 엔터테인먼트 등 다양한 사용 사례에 사용할 수 있는 생성형 모델을 통해 제작 또는 제조된 제품은 설계자가 염두에 둔 목적에 맞게 실제 세계에서 작동해야 하기 때문에, 오토데스크는 기능적인 3D 구조를 생성하는 데에 집중하고 있다.     오토데스크는 물 주전자의 예를 소개했다. 많은 3D 생성형 모델이 특정한 조명 환경에서 표면의 외관을 개선하는 텍스처를 가진 주전자 형상을 생성할 수 있다. 하지만, 베르니니 모델은 모양과 텍스처를 개별적으로 생성하며 이러한 변수를 혼동하거나 혼합하지 않는다. 베르니니가 생성한 물 주전자는 가운데가 비어 있으며, 실제 주전자와 마찬가지로 실제로 물을 담을 수 있다. 또한, 베르니니는 다양한 변형을 생성하는 제너레이티브 접근 방식을 적용하여, 디자이너에게 선택권을 부여하고 창의적인 워크플로에 기여할 수 있다. 오토데스크의 ‘2024 디자인 및 제작 현황 보고서’에 따르면 비즈니스 리더의 78%는 AI가 업계를 발전시킬 것이라고 믿고 있으며, 79%는 AI가 업계를 더욱 창의적으로 만들 것이라는 데 동의하고 있는 것으로 나타났다. 프로젝트 베르니니는 산업 전반의 제품 포트폴리오를 아우르는 지능형 지원 및 생성 기능을 제공하는 데 중점을 둔 오토데스크의 포괄적 AI 전략의 일부이다.  베르니니 모델을 건물에 적용하면 기하학적으로 철저하면서 창의적인 디자인을 생성하고, 새로운 세대의 건물과 건축가에게 영감을 줄 수 있다. 비디오 게임 캐릭터 모델이나 판타지 환경에 대한 훈련을 받으면 매혹적인 새로운 생물체나 가상 세계를 만들 수 있다. 자동차 디자인에 대한 교육을 받았다면 혁신적인 새 자동차 시리즈를 상상하는 데 도움을 줄 수 있다. 오토데스크 AI 랩은 디자인, 제조, 건축, 엔지니어링, 건설 분야의 어려운 작업과 미디어 및 엔터테인먼트(M&E) 분야의 크리에이티브 프로세스를 지원하기 위해 AI를 적용하는 다양한 과학자 및 전문가들로 구성된 팀이다. 이들은 공개적으로 사용 가능한 데이터와 CAD 개체 및 유기적 형상이 혼합된 복합 데이터 세트로 구성된 1000만 개의 다양한 3D 형상으로 베르니니 모델을 학습시켰으며, 이 작업에 기여한 연구는 올해 초 홍콩 중문대학교와 공동으로 AI 랩에서 발표했다. 현재 프로젝트 베르니니는 비공개 실험 단계에 있으며, 오토데스크는 설계 및 제작을 위한 생성형 모델의 성능을 연구하고 개선하기 위해 몇몇 파트너와 협력을 진행 중이다. 오토데스크는 “베르니니 모델은 효율적인 학습과 미세 조정을 통해 이를 쉽게 수행할 수 있도록 특별히 구조화되어 있다”면서, “프로젝트 베르니니는 흥미롭고 생성형 AI의 최첨단을 달리고 있지만, 이 모델은 더 크고 고품질의 전문 데이터 세트로 훈련할 때 더욱 유용하고 매력적으로 발전할 것”이라고 전했다.
작성일 : 2024-05-17
엔비디아, “생성형 AI 통해 다양한 분야서 HPC 활용 연구 가속화 지원”
엔비디아가 생성형 AI를 통해 HPC(고성능 컴퓨팅) 작업을 가속화하며 코드 생성, 기상, 유전학, 재료 과학 분야의 연구를 지원하고 있다고 밝혔다. 생성형 AI는 국가와 기업 연구소에서 비즈니스와 과학을 위한 HPC를 가속화하며 기반을 다지고 있다. 샌디아 국립 연구소(Sandia National Laboratories)는 세계 최대 규모의 슈퍼컴퓨터에서 사용하도록 설계된 병렬 프로그래밍 언어인 코코스(Kokkos)로 코드를 자동으로 생성하는 시도를 하고 있다. 여러 국립 연구소의 연구진이 개발한 이 특수 언어는 수만 대의 프로세서에서 작업을 수행하는 데 필요한 미묘한 부분까지도 처리할 수 있다. 샌디아 국립 연구소의 연구진들은 검색 증강 생성(RAG) 기술을 사용해 코코스 데이터베이스를 생성하고 AI 모델과 연결하고 있다. 이들은 다양한 RAG 접근 방식을 실험하면서 초기 테스트에서 긍정적인 결과를 보여주고 있다. 과학자들이 평가하게 될 RAG 옵션 중에는 네모 리트리버(NeMo Retriever)와 같은 클라우드 기반 서비스도 있다.     이러한 모델 조정과 RAG를 통한 코파일럿 구축은 시작에 불과하다. 연구진들은 궁극적으로 기후, 생물학, 재료 과학과 같은 분야의 과학 데이터로 훈련된 파운데이션 모델의 활용을 목표로 하고 있다. 일기 예보 분야의 연구원과 기업들은 기상, 기후 연구를 위한 서비스와 소프트웨어 세트인 엔비디아 어스-2(Earth-2)의 생성형 AI 모델인 코디프(CorrDiff)를 채택하고 있다. 코디프는 기존 대기 모델의 25km 해상도를 2km까지 조정할 수 있다. 또한, 결합할 수 있는 예측 수를 100배 이상 확장해 예측 신뢰도를 높일 수 있다. 자체 소형 위성 네트워크에서 데이터를 수집하는 기업인 스파이어(Spire)의 톰 고완(Tom Gowan) 머신러닝 및 모델링 책임자는 “생성형 AI를 통해 더 빠르고 정확한 예보가 가능해지고 있다”고 전했다. 스위스에 본사를 둔 메테오매틱스(Meteomatics)는 최근 자사의 일기 예보 사업에도 엔비디아의 생성형 AI 플랫폼을 사용할 계획이라고 발표했다. 메테오매틱스의 마틴 펜글러(Martin Fengler) CEO는 “엔비디아와의 협력은 에너지 기업들이 날씨 변동에 대한 빠르고 정확한 인사이트를 통해 재생 에너지 운영을 극대화하고 수익성을 높이는 데 도움이 될 것”이라고 말했다. 마이크로소프트는 생성형 AI로 재료 과학 분야의 작업을 가속화하는 연구를 진행했다. 마이크로소프트의 매터젠(MatterGen) 모델은 원하는 특성을 나타내는 새롭고 안정적인 물질을 생성한다. 이 접근 방식을 통해 화학, 자기, 전자, 기계 등의 기타 원하는 특성을 지정할 수 있다. 마이크로소프트 연구팀은 엔비디아 A100 GPU를 사용해 애저(Azure) AI 인프라에서 매터젠을 훈련시켰으며, 카본3D(Carbon3D)와 같은 기업은 상업용 3D 프린팅 작업에서 재료 과학에 생성형 AI를 적용하며 기회를 찾고 있다. 엔비디아는 “이는 연구자들이 생성형 AI를 통해 HPC와 과학 분야에서 할 수 있는 일의 시작에 불과하다”면서, “현재 사용 가능한 엔비디아 H200 텐서 코어 GPU와 곧 출시될 엔비디아 블랙웰(Blackwell) 아키텍처 GPU는 새로운 차원의 작업을 실현시킬 것”이라고 기대했다.
작성일 : 2024-05-16
다쏘시스템, 로봇 제조 위한 제품 개발 기술 및 사례 소개
다쏘시스템이 ‘K-Robot 세미나 : 로봇, 솔리드웍스를 만나다!’ 세미나를 그랜드 인터컨티넨탈 서울 파르나스에서 개최했다고 밝혔다. 로봇이 지능화되면서 전통적인 제조업을 넘어 다양한 산업 분야로 확대되고 있다. 이번 행사에서 다쏘시스템은 정부의 K-로봇 경제 정책과 발맞추어 자사의 솔리드웍스 및 클라우드 기반 제품 개발 플랫폼인 3D익스피리언스 웍스(3DEXPERIENCE Works)를 통한 국내 로봇 제조 기업의 선진 사례를 공유했다. 이번 세미나는 다쏘시스템코리아 배재인 CRE 본부장의 환영사로 시작해 경희대학교 이경전 교수가 IT 시장의 가장 큰 트렌드 중 하나인 AI 동향과 산업 응용 사례 및 전망을 공유했다. 이어서 경남대학교 한성현 교수가 로봇 기술의 동향과 미래 로봇 시장을 예측했다. 또한 다쏘시스템코리아 솔리드웍스 브랜드 전문가들이 로봇 설계, 데이터 관리, 협업, 시뮬레이션, 제조 라이프사이클을 보다 쉽고 빠르게 다룰 수 있는 클라우드 기반 제품 개발 플랫폼인 3D익스피리언스 웍스(3DEXPERIENCE Works)의 다양한 포트폴리오를 소개했다. 이와 함께 스타트업 기업이 실제 로봇 개발에서 있을 수 있는 어려움을 실감나게 표현하고, 이에 대한 다양한 극복 방안을 제시했다. ‘동시병행 설계’ 방식을 통해 설계와 검토를 빠르게 해결할 수 있는 솔루션을 소개하고, 모델링과 시뮬레이션을 결합한 모드심(MODSIM)을 통해 설계와 동시에 시뮬레이션을 수행함으로서 더 완성도 있는 제품을 단기간 내에 만들어 내는 모습을 시연했다. 이를 통해 참가자들은 한 번 만들어진 3D 데이터를 이용해서 다양한 업무를 활용하는 디지털 매뉴팩쳐링이 우리 제조업을 어떻게 바꿀 수 있는지 확인할 수 있었다.     다쏘시스템은 로봇 개발사들이 겪는 어려움을 해결할 수 있는 다양한 솔루션을 제시하면서, “로봇 개발사들이 한정된 자원을 효율적으로 활용하고 업무의 혼란을 최소화하며 편의성을 개선할 수 있을 것”으로 기대했다. 특히, 햄버거 패티를 굽는 AI 조리 로봇을 개발한 에니아이와 건설 현장 자율로봇을 공급하는 고레로보틱스는 다쏘시스템에서 제공하는 스타트업 지원 프로그램인 ‘3DEXPERIENCE Works for Startups’를 통해 성공적인 제품 개발 및 출시한 사례를 공유했다.   다쏘시스템코리아의 배재인 CRE 본부장은 “수백 개의 국내 로봇 제조사들이 이미 솔리드웍스와 3D익스피리언스 웍스 포트폴리오를 제품 개발에 적용하고 있다”면서, “앞으로도 산업 및 학계 최고의 전문가들과 함께 보다 많은 국내 로봇 제조사들과 K-로봇 경제 성장의 한 축을 담당할 수 있도록 하겠다”고 전했다.
작성일 : 2024-05-16
슈나이더 일렉트릭, 영국 기후 스타트업에 소프트웨어 중심 자동화 솔루션 공급
슈나이더 일렉트릭이 영국의 기후 스타트업인 브릴리언트 플래닛(Brilliant Planet)에 ‘에코스트럭처 오토메이션 엑스퍼트(EcoStruxure Automation Expert : EAE)’ 솔루션을 공급했다. 브릴리언트 플래닛은 미세조류(microalgae)로 상승하는 지구 온도를 억제하는 기술을 갖고 있다. 대기 중의 이산화탄소를 끌어내기 위해서 해안 사막과 야외 연못에서 미세조류를 전문적으로 재배하고 있으며, 이는 동일한 숲 면적보다 최대 30배 이상의 대기 중 탄소를 격리할 수 있다. 실제로 대기 중에서 이산화탄소를 격리하는 탄소 포집 기술은 기후 변화에 대처하기 위한 중요한 노력 중 하나다. 브릴리언트 플래닛은 모로코에 위치한 시설에서 전세계 현장에 배포할 수 있는 탄소 포집 플랫폼을 개발하고 있으며, 이 프로세스에는 필요에 따라 쉽게 확장할 수 있는 매우 유연하고 효율적인 제어 시스템의 구축을 필요로 했다. 슈나이더 일렉트릭은 브릴리언트 플래닛에 운영에 대한 가시성과 제어를 제공하기 위해 영국 엔지니어링 기업인 플래티넘 일렉트리컬 엔지니어링(Platinum Electrical Engineering)과 함께 소프트웨어 중심 범용 자동화 솔루션인 EAE를 공급했다. 슈나이더 일렉트릭의 EAE는 IEC61499 국제 표준을 기반으로 한 범용 자동화 솔루션이다. 개발툴과 컨트롤러, 아카이브, 시스템 통합 기구 등으로 구성된 분산형 자동화 시스템으로, 프로그래밍 소프트웨어(IDE)와 범용 제어 장치(PLC), PC 등과 상호 연동되어 운영된다.     개방형 플랫폼인 EAE는 기본 하드웨어 인프라와 상관없이 독립적으로 소프트웨어 애플리케이션을 모델링하고 배포해 소프트웨어 중심의 자동화 애플리케이션을 구축할 수 있다. 엔지니어는 소모적인 수작업을 자동화하고, 중복 작업을 제거해 업무 효율성을 높일 수 있다. 이를 통해 기존의 자동화 작업을 수행하는데 걸리는 시간을 2~7배 단축할 수 있다. 또한, EAE는 개방성과 호환성을 가진 것이 특징이다. 자동화 시스템 중 타사 PLC가 탑재되더라도 소프트웨어는 정상 작동하기 때문이다. 여기에 드래그앤드롭 방식 인터페이스 구성으로 작업자도 손쉽게 사용할 수 있다. 슈나이더 일렉트릭의 산지스 싱(Sanjith Singh) 소프트웨어 중심 자동화 부문 글로벌 부사장은 “지속 가능성과 차세대 산업 자동화라는 사명을 달성하려면 신뢰할 수 있는 얼라이언스 파트너와 소중한 고객으로 구성된 네트워크가 필요하다”면서, “브릴리언트 플래닛이 슈나이더 일렉트릭의 EAE 솔루션을 통해 기후 변화 문제에 대응하기 위한 지속 가능한 솔루션을 제공할 수 있길 기대한다”라고 설명했다.
작성일 : 2024-05-09
아비바, 산업 인텔리전스 플랫폼 ‘커넥트’ 출시
아비바가 산업 인텔리전스 플랫폼인 ‘커넥트(CONNECT)’를 공개했다. 기존에 ‘아비바 커넥트’에서 ‘커넥트’로 변경된 이 플랫폼은 슈나이더 일렉트릭, RIB, ETAP 및 광범위한 파트너 공급업체의 애플리케이션의 연동을 지원하여 고객이 운영하고 있는 산업 생태계 전반의 인사이트를 통합하고, 지능형 디지털 트윈을 구축할 수 있도록 돕는다. 이를 통해 고객은 각 분야의 의사결정권자가 신뢰할 수 있고 실행 가능한 인사이트를 기반으로 성과를 높이고 효율성을 최적화하는 동시에 지속가능성을 극대화하여 ROI를 높일 수 있다. 새롭게 출시된 커넥트는 전체 산업 라이프사이클을 실시간으로 아우르는 개방적이고 중립적인 디지털 플랫폼으로, 기본 데이터 서비스, 시각화 서비스, 모델링 및 분석 기능, 애플리케이션 개발 서비스와 더불어 서비스 및 사용 관리 기능을 제공한다. 데이터, 디지털 트윈, 산업 인공지능, 심층적인 도메인 전문 지식을 단일 환경 내에 통합하며, 마이크로소프트 애저(Microsoft Azure) 클라우드 기반으로 고객이 역량을 손쉽게 확장하고 향상된의 지속가능성을 경험할 수 있도록 지원한다. 커넥트는 원격 자산, 아비바의 애플리케이션, 타사 데이터 소스를 하나의 안전한 단일 플랫폼으로 결합하여 산업 기업이 클라우드에 대한 기술 투자를 최대한 활용할 수 있도록 지원함으로써 고유한 산업 생태계를 구축할 수 있도록 한다. 아비바에 따르면 현재 전 세계에서 수만 명의 월간 액티브 유저가 커넥트를 사용하고 있다. 커넥트에서 지원되는 주요 제품으로는 아비바 파이(AVEVA PI) 시스템, AVEVA Operations Control(운영 제어), AVEVA Unified Engineering(통합 엔지니어링), AVEVA Advanced Analytics(고급 분석), AVEVA Asset Information Managament(자산 정보 관리), RIB CostX 등이 있다.     한편, 아비바는 새로운 산업 애플리케이션 시장의 기반을 형성하기 위해 커넥트 중심의 다양한 파트너십을 확대하고 있다고 전했다. 예를 들어, 아비바와 마이크로소프트는 아비바의 산업 인텔리전스 플랫폼인 커넥트와 마이크로소프트의 제조업 클라우드(Microsoft Cloud for Manufacturing)를 사용하여 생산 실행 데이터와 공급망 생산 계획 데이터를 마이크로소프트 패브릭(Microsoft Fabric)에서 통합하고 컨텍스트화한다. 아비바의 캐스퍼 허즈버그(Caspar Herzberg) CEO는 “연결된 산업 경제 전략은 생태계 전반에서 글로벌 협업의 이점을 실현한다. 업계를 선도하는 산업 인텔리전스 플랫폼인 커넥트를 통해 산업 조직에서는 가치 사슬에 대한 총체적인 이해를 바탕으로 모든 단계에서 실시간 혁신을 촉진할 수 있다. 분석과 AI로 강화된 고유의 강력한 데이터 에코시스템은 마찰이 발생하지 않는 단일 환경에서 탁월한 효율성을 제공하여, 더 스마트하게 엔지니어링하고, 더 효율적으로 운영하며, 수익성을 높일 수 있도록 지원한다”고 말했다. 또한 “커넥트는 산업 디지털 트랜스포메이션의 다음 물결(Industrial DX 2.0)을 가속한다. 클라우드에서 서비스되는 AI 기반 플랫폼이 산업 정보를 공유하고 통합하여 기업, 파트너 및 고객의 효율성, 생산성 및 지속 가능성을 향상시킨다. 워크플로 간소화부터 실시간 모니터링 및 제어, 원격 협업 개선, 산업 자산의 엔드 투 엔드 수명 주기 성능 극대화에 이르기까지 업계의 디지털 트랜스포메이션 요구 사항을 해결한다”고 덧붙였다.
작성일 : 2024-05-03
크레오 파라메트릭 10.0에서 사용자 정의 피처의 생성 및 활용
제품 개발 혁신을 가속화하는 크레오 파라메트릭 10.0 (12)   이번 호에서는 자주 사용되는 형상을 사용자 정의 피처(UDF)로 생성하고 손쉽게 재사용하는 방법에 대해 알아보자. UDF는 중복되는 형상을 매번 모델링하지 않고 라이브러리의 형태로 생성하여, 설계 시간을 단축하고 편의성을 향상시키기 위해 사용된다.   ■ 박수민 디지테크 기술지원팀의 과장으로 Creo 전 제품의 기술지원 및 교육을 담당하고 있다. 이메일 | smpark@digiteki.com 홈페이지 | www.digiteki.com     UDF로 사용할 모델 생성하기 UDF로 만들기 위한 새 부품을 생성한다.     ‘밀어내기’를 이용하여 UDF 형상의 참조로 사용할 아래 부분의 형상을 생성한다.     다음으로는 UDF를 사용자가 원하는 위치에 쉽게 배치하기 위해 좌표계를 기반으로 모델을 생성한다. 먼저 좌표계를 생성한다.     좌표계 생성 시 사전에 생성한 형상의 위 서피스를 선택하고, 거리를 이용하여 배치 조건을 선정한다. 이때 생성하는 좌표계의 참조 조건이 UDF를 생성한 이후 배치할 때 참조하게 되는 조건이 된다.     새롭게 생성한 좌표계를 기준으로 X, Y, Z 방향의 데이텀 평면을 새롭게 생성한다.     모델 트리에 새롭게 좌표계와 데이텀 평면이 생성된 것을 확인한다.     새로 생성한 좌표계와 데이텀 평면을 참조하여 UDF로 생성하고 싶은 형태를 모델링한다. 이때 기본 참조면(SIDE, TOP, FRONT)과 밀어내기1을 참조하지 않아야 한다.     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
시뮤필의 복합재 수지 해석 기능 소개
시뮤텐스 소프트웨어를 활용한 복합소재 해석 (2)   시뮤텐스(SIMUTENCE)의 시뮤필(SimuFill)은 성형 프로세스 모델링을 위한 기존 소프트웨어 아키텍처(아바쿠스 및 몰드플로우 플러그인)를 개선하여 고급 압축 및 사출 성형 분석이 가능하다. 시트 몰딩 컴파운드(SMC), 장섬유 강화 열가소성 수지(LFT) 및 유리 매트 열가소성 수지(GMT)의 압축 성형은 단섬유 섬유 복합재에 가장 많이 적용되는 제조 공정 중 하나이다. 그러나 이러한 재료를 성형하면 부분적으로 채워진 캐비티(미충진 영역)가 수반될 수 있어, 섬유 배향의 변화와 같은 흐름에 따른 효과 분석이 필요하다. ■ 자료 제공 : 씨투이에스코리아, www.c2eskorea.com   시뮤필(SimuFill) 제품을 통해 제공되는 몰드플로우 애드온(Moldflow Add-on)은 PVT 거동을 경화도의 함수로 모델링할 수 있으며, 각각 열가소성 수지와 열경화성 수지의 결정화 및 경화 동역학을 예측하는 것이 포함된다.   LFT 스트랜드에 대한 섬유 배향 초기화 유동 길이가 충분히 짧은 경우 초기 섬유 배향은 최종 섬유 배향에 큰 영향을 미친다. LFT 스트랜드(strands)에서 국부적인 섬유 배향은 불균일하며 압출 공정을 통해 결정된다. 시뮤필을 사용하면 분석 방정식을 사용하여 LFT 스트랜드의 로컬 섬유 배향을 초기화할 수 있다.     결정화 및 경화 동역학 시뮤필을 사용하면 열가소성 재료(LFT, GMT)의 결정화 역학과 열경화성 재료(SMC)의 경화 역학을 예측할 수 있다. 이는 결정화/경화도를 초기 조건으로 고려하여 금형 충진 및 부품 변형/스프링을 정확하게 예측할 수 있다. 시뮤필은 아바쿠스(Abaqus)의 후 변형 분석용 추가 기능인 시뮤워프(SimuWarp)에서도 사용되는 몰드플로우용 Nakamura-Ziabicki 모델(결정화 모델)을 제공한다.     PVT 모델링 PVT 거동의 정확한 모델링은 열 신장 및 수축으로 인한 잔류 변형률을 정확하게 예측하는 데에 중요하다. 잔류 변형은 잔류 응력과 변형을 유발한다. 시뮤필은 열가소성 수지와 열경화성 수지 모두에 대한 경화도의 함수로서 PVT 거동을 예측하기 위한 정교한 모델을 제공한다.     프레스 톤수 최적화 프레스 톤수는 제조에 매우 중요하고 자본 투자에 있어 비용을 유발하는 요소이다. 복잡한 재료 거동, 설계 반복 및 처리 전략은 필요한 공정 톤수에 큰 영향을 미친다. 시뮤필을 사용한 성형 시뮬레이션은 공정력을 신뢰할 수 있는 추정을 가능하게 하므로 자본 투자를 줄이는 데에 핵심 역할을 한다.     초기 Charge 성형 대부분의 시뮬레이션 접근 방식은 재료 흐름이 시작되기 전에 복잡한 초기 Charge 구성의 성형을 포착하지 못한다. 시뮤필을 사용하면 복잡한 초기 Charge 구성을 설명하기 위해 재료 성형 및 재료 흐름을 예측하는 순차적 접근 방식이 가능하다. 초기 Charge 구성을 고려하고 최적화하면 완전한 금형 충진과 공정 시간 단축이 보장된다.       ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
PyMAPDL의 기초부터 활용까지
앤시스 워크벤치를 활용한 해석 성공사례   파이앤시스(PyAnsys)는 파이썬(Python)을 활용하여 앤시스(Ansys) 제품을 사용할 수 있는 라이브러리를 뜻한다. 파이앤시스는 구조해석과 관련한 PyMAPDL, PyMechanical과 전처리 및 후처리에 대한 PyDPF가 있다. 이와 같은 라이브러리를 이용하면 파이썬 내에 있는 패키지와 함께 다양한 작업이 가능해진다. 이번 호에서는 파이앤시스 중에서도 PyMAPDL에 대한 사용 방법과 활용 예시를 소개하고자 한다.   ■ 노은솔 태성에스엔이 구조 3팀 매니저로 구조해석 및 자동화 프로그램에 대한 기술 지원을 담당하고 있다. 이메일 | esnoh@tsne.co.kr 홈페이지 | www.tsne.co.kr   앤시스에서 구조, 열, 음향 등 다양한 해석에 사용되는 유한요소 솔버 중 하나인 Mechanical APDL은 명령어를 기반으로 구동된다. 복잡한 연산이나 매개변수 설정 및 자동화 기능이 가능하기 때문에 여전히 많이 사용되고 있다. 하지만 앤시스 워크벤치(Ansys Workbench)의 제한적인 기능을 활용할 경우, 추가적으로 APDL 명령어를 사용해야 한다. 말하자면 APDL 명령어로 여러 기능을 구현할 수 있지만, 넓은 범위에서 적용하기에는 한계가 있는 것이다. 예로 머신러닝이나 딥러닝과 관련한 라이브러리인 텐서플로(TensorFlow)나 케라스(Keras) 등은 APDL 명령어 내에서는 사용할 수 없으며, 파이썬과 APDL 연동에도 한계가 있다.  이 때 PyMAPDL 라이브러리를 사용하면 파이썬 내에서 APDL을 사용하기 때문에 활용도가 넓어진다. 이번 호에서는 PyMAPDL의 사용 방법과 활용 예시를 다뤄보고자 한다.    PyMAPDL 사용 방법 PyMAPDL은 파이썬에서 사용될 때 gRPC(Google Remote Procedure Call)를 기반으로 파이썬 명령어를 APDL 명령어로 변환하여 MAPDL 인스턴스(Instance)에 전송하고, 결과를 파이썬으로 다시 반환한다. 이러한 작업 과정 때문에 파이썬과 MAPDL 간 원활한 데이터 통신이 가능해지며, 다수의 MAPDL 인스턴스를 생성하여 다른 명령으로 동시 작업 또한 가능하다.   그림 1. PyMAPDL gRPC   먼저 PyMAPDL을 사용하기 위해서 앤시스 메커니컬(Ansys Mechanical)이 설치되어 있어야 하며, 관련 라이선스를 보유하고 있어야 한다. 현재 파이앤시스 홈페이지에 따르면 파이썬 3.8 이상 버전을 지원하고 있으며, gRPC 기반으로 사용하기 위해서 앤시스 2021 R1 이상을 권장한다. 파이썬과 앤시스 모두 설치되어 있는 환경이라면 추가적으로 PyMAPDL 라이브러리를 설치해야 한다. 터미널 창에 ‘pip install ansys-mapdl-core’ 한 줄의 입력으로 쉽게 설치되며, 버전을 따로 지정하지 않을 경우 최신 버전으로 설치된다. PyMAPDL은 <그림 2>와 같이 ‘launch_mapdl’ 함수를 호출하여 사용한다. 이는 Mechanical APDL Product Launcher를 실행하는 것과 유사하다. 해당 함수를 활용할 때 입력 가능한 주요 인자들을 입력하여 작업 폴더 위치나 파일 이름, 계산 방식 및 라이선스 등을 지정할 수 있다.    그림 2. PyMAPDL 실행 명령어   기존에 APDL에서 육면체 형상을 모델링하여 요소를 생성하는 과정은 <그림 3>과 같이 작성되고, 동일한 작업을 PyMAPDL로는 <그림 4>와 같이 구성할 수 있다. 작성된 APDL과 PyMAPDL 명령어를 비교하면 형태가 매우 유사한 것을 볼 수 있다. 이 때 PyMAPDL은 파이썬에서 두 가지 방식으로 사용된다. 첫 번째는 ‘run’ 명령어를 활용하여 APDL 명령어를 스트링(string)으로 입력해 직접 실행하는 방법이며, 두 번째는 파이썬 명령어로 변환해서 처리하는 방법이다.   그림 3. MAPDL 모델링 및 요소 생성 예시   그림 4. PyMAPDL 모델링 및 요소 생성 예시     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02
1D 시뮬레이션을 위한 카티아 다이몰라
산업 디지털 전환을 위한 버추얼 트윈 (1)   이번 호부터 산업 분야에서 버추얼 트윈(virtual twin)을 구축하고 활용하기 위한 다쏘시스템의 솔루션을 살펴본다. 첫 번째로 소개하는 다이몰라(CATIA Dymola)는 모델 기반 시스템 설계와 시뮬레이션을 위한 툴이다. 다이몰라는 다양한 산업 분야에서 사용되며, 기계, 전기, 열, 유체, 제어 시스템 등 다양한 시스템의 거동(behavior)을 모델링 및 시뮬레이션할 수 있다. 다이몰라를 알기 위해서는 우선 모델리카(Modelica)에 대해 알아야 한다.   ■ 안치우 다쏘시스템코리아의 카티아 인더스트리 프로세스 컨설턴트로 CATIA Dymola를 활용한 1D 시뮬레이션을 담당하고 있다. 관심 분야는 Modelica, FMI, 1D~3D 코시뮬레이션, SysML 기반의 Modelica 모델 개발이며 LG전자, 삼성전자, SK하이닉스 등 다수의 프로젝트 및 제안을 수행하고 있다. 홈페이지 | www.3ds.com/ko   1D 시뮬레이션이란 시간의 흐름에 따라 지배 방정식을 1차원으로 한정지어 계산하는 방법을 의미한다. 예를 들어, 스프링-댐퍼 시스템에서 길이 방향인 하나의 차원에서 수학적 모델링을 통해 빠른 시간 내에 결과를 도출해 검토할 수 있다. 장점으로는 모델 구성 및 검토의 시간이 빠르고, 표현의 제약이 적으며, 시스템간 상호 작용을 효율적으로 검토 가능하다. 단점으로는 시스템의 기능을 수식화하기 위해 도메인(domain)에 대한 높은 이해도가 필요하고, 인풋(input) 정보의 품질에 따라 아웃풋(output)이 민감하게 반응한다.   모델리카는 시스템 모델링을 위한 언어이다. 모델리카(Modelica)는 1996년 모델리카 어소시에이션(Modelica Association)에 의해 개발된 시스템 모델링을 위한 언어이다. 무료로 사용할 수 있고, 여러 개발자 및 전문가에 의해 개발되고 있다. 모델리카는 시스템 모델링을 지원하며, 다쏘시스템에서는 시스템 모델링의 원활한 시뮬레이션을 위한 솔버 알고리즘을 개발하고 있다. 다이몰라에는 모델 시뮬레이션을 위한 다양한 솔버가 내장되어 있다. 사용자는 문제 해결을 위한 미분방정식에 대한 표현을 모델리카 문법에 맞게 표현함으로써 시뮬레이션을 위한 모델링은 끝났다고 볼 수 있으며, 이러한 이유 때문에 모델리카는 C, C++, 포트란(Fortran) 등 타 언어에 비해 코드량이 적다는 것을 알 수 있다. 모델리카의 모델링 방법에는 텍스트 타입으로 방정식을 정의할 수 있고, 또한 유저에게 친근한 GUI(그래픽 사용자 인터페이스)를 활용한 객체 모델링 기반으로 모델을 구성할 수 있다.    모델리카는 비인과적/인과적 해석을 모두 지원한다. 인과적(causal) 모델링과 비인과적(acausal) 모델링은 둘 다 시스템이나 현상을 설명하고 예측하기 위한 방법론이다.   그림 1   비인과적 모델링은 원인과 결과 간의 인과 관계를 명확히 구분하지 않고 시스템의 구성요소 간의 관계를 모델링하는 방법이다. 이 방법은 일반적으로 동적 시스템의 거동을 설명하거나 예측할 때 사용하며, 시스템의 구성 요소와 그들 간의 관계를 수학적 방정식으로 표현하여 시스템의 동작을 설명한다. 각 요소가 다른 요소에 의해 어떻게 영향을 받는지를 보다 전체적으로 이해하는 데에 도움이 된다. 인과적 모델링은 원인과 결과 간의 인과관계를 중심으로 모델을 구성한다. 이 모델링 기법은 일반적으로 인과관계를 고려하여 시스템의 동작을 설명하고 예측한다. 예를 들면 A가 B에 어떻게 영향을 주는지, 또는 어떤 요인이 결과에 어떻게 기여하는지를 분석한다. 주로 원인과 결과 간의 관계를 나타내는 도표나 그래프를 사용해 시각화하며, 시간의 흐름을 고려하여 이전 사건이 이후 사건에 어떻게 영향을 미치는지를 이해한다.  비인과적 모델링은 물리적 시스템의 동작을 설명하는데 유용하다. 예를 들어, 열 전달, 유체 흐름, 전기 회로 등과 같은 시스템에서 원인과 결과 간의 명확한 인과 관계를 파악하기 어려운 경우가 있다. 이러한 시스템은 에너지, 질량 또는 정보의 흐름을 모델링하여 설명할 수 있다.    모델리카는 해석 솔버에 대한 개발이 필요 없다. 실제 모델링 후 유저는 소스코드를 볼 수 있고, 해석 결과를 확인 할 수 있다. 그렇지만 솔버에 대한 구현 방식은 확인할 수 없다. 다이몰라에 솔버가 내장되어 있어 유저는 미분방정식에 대한 표현을 모델리카 문법에 맞게 표현하면, 유저가 모델링한 시스템에 대한 해석 결과를 확인할 수 있다. 이러한 이유로 인해 모델리카의 코드량은 타 언어에 비해 적다. 솔버가 해석 결과를 보여주기 위해 <그림 2>를 참조하면, 모델리카 file(*.mo)를 C 언어로 변환하고 참조할 라이브러리와 함께 컴파일을 수행하기 때문에 유저는 이 과정을 인식하지 못하는 경우가 많다.   그림 2     ■ 자세한 기사 내용은 PDF로 제공됩니다.
작성일 : 2024-05-02